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Detecting occupancy with motion detectors is the basis of many building
automation systems for heating, ventilation, air conditioning or lighting. The
conventional time delay method used in these automation systems has received
many attempts to improve it due to a difficulty in maintaining a balance between
user comfort and energy efficiency. These attempts have included more advanced
statistical and machine learning based approaches.

This thesis proposes that data from multiple motion detectors can be handled with
novel discrete target tracking. Multiple Hypothesis Tracking (MHT) can be used
to model occupant movements in the area and ultimately to detect occupancy.
This model uses the adjacency relationships as well as division between border and
interior nodes, whereas the exact positions of the sensors are irrelevant. Targets
which have been tracked to the border of the area (i.e. to the vicinity of the exits)
can be deleted sooner than those previously detected by the interior sensors.

Simulated motion detector data was used to optimise the model parameters. The
approach was also tested with two different setups with real sensors. The algorithm
was successfully able to remember the presence of occupants which are not currently
in the line of sight of the sensors. In a challenging test setup, accuracy of the
predictions was 89 %, thus demonstrating a potential for 15 % energy savings
compared to conventional time delay method.

Keywords: Energy efficiency, Occupant detection, PIR, Target tracking, MHT,
BSN, HVAC
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Useat valaistuksen, lämmityksen, ilmastoinnin ja jäähdytyksen taloau-
tomaatiojärjestelmät perustuvat läsnäolon tunnistamiseen liikesensoreilla
aikakatkaisumenetelmää käyttäen. Kirjallisuudesta löytyy paljon ehdotuksia
aikakatkaisumenetelmän korvaamisesta kehittyneemmillä tilastotieteeseen tai
koneoppimiseen perustuvilla lähestymistavoilla. Tarkemmalla menetelmällä olisi
mahdollista parantaa järjestelmän energiatehokkuutta heikentämättä käyttäjän
tyytyväisyyttä. Tässä työssä esitetään, että useiden liikesensoreiden antama
tieto voidaan yhdistää uudella diskreettiin sijaintiin perustuvalla kohteiden
seurantamenetelmällä.

Monihypoteesiseurannalla on mahdollista mallintaa tilan käyttäjien liikkeitä ja
päätellä onko tila kyseisellä hetkellä käytössä vai ei. Malli hyödyntää tietoa siitä,
mitkä sensorit ovat vierekkäisiä sekä jakoa reunoilla ja alueen sisällä olevien
sensorien välillä. Tarkan sensorien sijainnin selvittäminen ei kuitenkaan ole tarpeel-
lista. Alueen reunoille (eli uloskäyntien läheisyyteen) kulkeneet kohteet voidaan
poistaa mallista aiemmin kuin ne, joista viimeiset havainnot on tehty alueen sisältä.

Tarvittavat parametrit optimoitiin simuloitujen liiketunnistusten avulla. Läh-
estymistapaa testattiin myös oikeilla sensoreilla kahdella eri koeasettelua. Siten
oli mahdollista säilyttää muistissa sellaisten läsnäolijoidenkin paikat jotka eivät
olleet sillä hetkellä sensoreiden havaintoalueen sisällä. Haastavassa koeaset-
telussa menetelmän tarkkuus oli 89 % ja mahdollinen energiansäästöpotentiaali
aikakatkaisumenetelmään verrattuna oli 15 %.

Avainsanat: Energiatehokkuus, läsnäolon tunnistus, passiivinen infrapunatun-
nistin, kohteiden seuranta, monihypoteesiseuranta, binäärisen-
soriverkko, talotekniikka
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Preface
It has been said that adding an equation halves the popularity of a book [11]. In
other words, the number of readers for a similar study without any equations is

R′ = 2n ·R, (1)

where n is the number of equations and R is the actual number of readers. Since
the total number of equations in this thesis is 40, I could have reached around one
trillion (1012) times larger audience had I left out the math. I have to thank you,
one of the few readers this study has left, on coming this far. I hope this thesis is
more helpful to you than to all those readers I have lost.

Writing this thesis would not have been possible with the support of a broad
group of friends and colleagues. Professor Aki Vehtari gave me valuable insights into
the issue when I was about to begin my research, and explained to me why my initial
approach was not the best possible. The most challenging part of this thesis was
the development of a tailored target tracking algorithm and Professor Simo Särkkä’s
support has been irreplaceable for that matter. Thank you to you both!

I believe that this project has also taught me something about writing thanks
to the feedback I have received from Laura Sepponen, Anya Siddiqi, Niko Ferm,
Ukko Liukkonen, and Heli Vainio. Juulia Suvilehto deserves special thanks for the
extraordinarily detailed feedback I got from her. I just hope that this section does
not have any spellign errors.

I also want to thank supervisor Prof. Peter Lund and instructor Laura Seppo-
nen. Completing this thesis would have certainly taken longer without Laura’s
encouragements to concentrate on the major study subjects. Jukka Ahola and Pauli
Korhonen have been a great help to me with the sensors and other practical stuff.
Max Björkgren has taught me how to keep an open mind for new ideas and test as
many of them as quickly as possible. Sometimes one also has to think about the
issues from the customer’s point of view, as I have learned from Henri Juslén and
Lars Hellström. Thank you to everyone else at Helvar too for all your support and
the great work environment.

Espoo, September 2016

Heikki Pulkkinen
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Symbols and Abbreviations

Symbols
CCO2 Indoor CO2 concentration
C ′CO2 CO2 concentration of the air supplied by ventilation
E∆t Emission matrix for ∆t. See Equation (3030).
Et Estimated occupancy status at time t. See Equation (22).
F State transition model for a Kalman filter
Gt Ground truth, actual occupancy status
H Hypothesis consisting of earlier decisions. See Equation (1515).
Ĥ Parent hypothesis. See Equation (1515).
K Number of occupants
k PIR triggering rate ratio between closest and adjacent nodes
LB Lifetime of the targets in border nodes
LI Lifetime of the targets in interior nodes
M Maximum number of hypotheses
Nm mth sensor node
NF Estimated amount of lost messages. See Section 4.1.24.1.2.
NS Amount of successful messages. See Section 4.1.24.1.2.
Q Ventilation flow rate
R Success rate of the wireless connection. See Section 4.1.24.1.2.
S CO2 generation rate per occupant
sTn Position of target Tn
Tn nth tracked target
T∆t Transition matrix for timestep ∆t. See Equation (3434).
t Time
V Volume of the space
wt White noise at time t
xt State vector at time t. See Equation (1010).
yit ith observation which has arrived at time t
Yt All observations up to time t
Yn
t Observations up to time t associated with target Tn

∆t Length of the time step
Θ Association and movement hypothesis. See Equation (1414).
ΛE Emission rate matrix
ΛT Transition rate matrix. See Equation (3333).
λFA False alarm rate
λE PIR sensor triggering rate in current node. See Equation (3939).
λNT New track rate
λT Target transition rate to adjacent nodes. See Equation (3838).
ωt Partition of Yt. See Equation (1313).
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Operators
d
dt

derivative in respect to time t∑
i

Sum over index i∏
i

Product over index i

A 7→ B Mapping from A to B

A[i, j] Matrix A element in row i and column j

log(x) Logarithm of x to base 10

O(n) Complexity of an algorithm with the big O notation.

P (A|B) Conditional probability of A given B

P∆t(A) Probability of an event A happening within time ∆t

Abbreviations
ANN Artificial Neural Network
BBN Bayesian Belief Network
BSN Binary Sensor Network
CO2 Carbon dioxide
ECF Energy Conservation Factor. See Equation (44).
FA False Alarm (clutter)
GNN Global Nearest Neighbour
HMM Hidden Markov Model
HVAC Heating, Ventilation and Air Conditioning
LNN Local Nearest Neighbour
MCMC Monte Carlo Markov Chain
MDS Multidimensional Scaling
MHT Multiple Hypothesis Tracking
NT New Track
PAF Prediction Accuracy Factor. See Equation (33).
PIR Passive infrared
RMS Root Mean Square
UCF User Comfort Factor. See Equation (55).



1 Introduction
Buildings account for one-third of energy consumption in the European Union [22,
33]. The majority of this is consumed by heating, ventilation, and air conditioning
(HVAC) and lighting. Since the need to operate these systems depends highly on the
presence of occupants, accurate detection of occupancy has been an ongoing research
topic. Even a slight improvement in this area can quickly bring major energy savings.

Passive infrared (PIR) sensors have been a common way to detect occupancy
since their introduction 40 years ago. The output of the sensor can directly be set to
control lighting or sometimes even HVAC systems. This is usually done using the
time delay method: When the sensor detects motion, a timer starts. Any subsequent
observations will reset the timer. When the timer ends, the area is considered
unoccupied.

The weakness of the time delay is well known to many users of automatic lighting
control. If the occupant is somewhere outside of the sensor’s line of sight, the lights
will at some point turn off too early. Sometimes that can also happen if the occupant
is not moving enough. Improving the sensor quality can sometimes resolve these
problems. In this thesis, however, we explore the possibility of solving the issue with
more advanced data analysis.

If a human sees someone entering a room, it is easy to understand that the room
is occupied until the occupant is seen leaving the area. It does not matter if the
occupant is not detected directly during that time. In a similar way, a computer
program can detect occupancy indirectly. Examples of these kinds of situations are
shown in Figure 11. If the previous observation was made by one of the sensors close
to these positions, the space can safely be assumed to be occupied.

This can be accomplished by having a computer model the occupants within the
building. A framework for this kind of data analysis already exists in the form of
target tracking. The approach was initially developed for radars where measurements

Figure 1: Two examples of layouts where an occupant is not in the line of sight of
any of the sensors (red circles), but cannot leave the area without being detected.
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are also explained by associating them to one or more of the modeled objects [44].
In our application, we have access to wireless motion detectors with a dense

layout (see Figure 11). Our goal is to make the installation and configuration of the
system as effortless as possible, and for this reason, the exact positions of the sensors
are not known. As we discuss in Section 7.27.2, it is possible to determine which sensors
are adjacent to each other only by using the sensor data [55, 66]. This information
about the structure is the basis of our model.

Traditionally occupancy is measured with only a few motion detectors per room
with a large line of sight. The large number and tight spacing of the sensors in our
setup enable us to reach a much better accuracy than has previously been possible.
Complex patterns and events can be detected by combining the outputs of multiple
simple binary sensors.

In this thesis, we introduce a novel method of occupancy detection in a discrete
sensor network. The type of the sensors accounts for the major difference of our
method compared to the traditional target tracking. Whereas radars can measure
target’s position on a continuous scale, a motion detector can only give discrete
information.

This kind of sensor setup is called Binary Sensor Network (BSN) [77]. Unfortu-
nately, target tracking in such an environment is usually based on the knowledge of
exact positions of the sensors. Furthermore, a standard BSN approach requires a
high density of sensors.

In addition to knowledge on which sensors are adjacent, we utilise information
about which sensors are on the border of the area, such as close to doors or other
exits. Target tracking is then used to determine whether the occupants are in the
vicinity of the interior sensors or if they have approached the exits. With this method,
we can apply long time delays when occupants have previously been detected within
the interior and switch to unoccupied state sooner when they have been tracked to
the border of the area.

The goal of this thesis is to determine if target tracking is an accurate method
for occupancy detection. To do this, we first adjust the earlier approaches so that
they can be used with our devices in Chapter 33. In Chapter 55 the method is tested
with simulations and real sensor data.

The accuracy of occupant detection is measured in two different ways. Highest
priority is given to user comfort, which is related to the accuracy of correctly detecting
occupancy when the area is occupied. In these cases, the accuracy requirement was
set to 90 % or 95 %.

The second factor is the utilisation of potential energy savings when the area
is unoccupied. For example with the time delay method the area is incorrectly
considered to be occupied even some time after the occupants have left. If two
methods can achieve the same level of user comfort, the one with the higher amount
of energy savings is considered superior. In Chapter 66 target tracker and the time
delay method are compared.

This thesis does not go into the details of automatically configuring the sensor
network. This area has already been investigated earlier, and a satisfactory solution
already exists [55, 66]. Improving the current algorithm is a possible research area in
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the future.
Integration between the occupancy detection to HVAC, lighting or some other

system is also outside of the scope of this thesis. The aim of this thesis is limited to
determining the current occupancy of a space as accurately as possible.
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2 Background
There are numerous approaches for occupant detection and occupant counting.
Motion sensors such as passive infrared (PIR) sensors are the most common equipment
and are also used as the main data source in this thesis. Other possible sources of
information include carbon dioxide (CO2) sensors, microphones, and video cameras.
Occupancy information is usually divided into the following subcategories [88]:

1. Presence of occupants anywhere in the building

2. Presence of occupants in each room

3. Count of people present

4. Activity: What are the occupants doing?

5. Identification of the occupants

In this thesis we focus on the first three categories since these types of informa-
tion can be acquired with motion detectors. To identify the occupant one would
need additional sources of information. Possible approaches are facial recognition,
integration with access control or a mobile application. Combining motion detector
data with one of these is a potential topic for future research.

First two categories are also called occupant detection while the third category is
sometimes referred as occupant counting [99]. Occupant detection aims at telling the
difference between time periods of the room being occupied or unoccupied. In some
cases, such as controlling heating and lighting, occupant detection is enough, and
attention should be focused on making the detection as accurate as possible. These
methods are discussed further in Section 2.12.1.

Having an approximation of the number of people is useful for some applications.
These include ventilation, usage statistics, evacuation, and security related issues.
Section 2.22.2 describes possible approaches to this problem.

Sensor data can also be processed with tracking algorithms. In the case of binary
sensors, such as motion detectors, the approach is called binary sensor network.
Review of previous work on this matter is provided in Section 2.32.3.

2.1 Occupant Detection

This section summarises earlier work with occupant detection. We focus on research
where PIR sensors are the main information source.

In Section 2.1.32.1.3 we discuss the most common way to detect occupancy with a
simple time delay method. It has been suggested that a decision tree (Section 2.1.42.1.4)
would be an accurate method to combine data from multiple sensors. Utilising
history data with a Bayesian Belief Network (Section 2.1.52.1.5) or a Hidden Markov
Model (Section 2.1.62.1.6) is another possible approach. Before that we discuss how to
measure accuracy (Section 2.1.12.1.1) and classify errors (Section 2.1.22.1.2).
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The goal of occupant detection is to calculate estimated occupancy status

Et =

{
1, if space is occupied at time t
0, otherwise.

(2)

There are two main types of occupancy detection. Sometimes the analysis has
to be done live, which is the case with heating, ventilation, and air conditioning
(HVAC) automation. In a live analysis, only the data obtained up to that point in
time can be used.

The second type can be called analysis of history data. In this case, the result is
not required immediately, and also measurements after the time of interest can be
utilised. For example, if a motion sensor sees movement soon after time t the area
was probably occupied also at time t. An example of this kind of situation would be
the estimation of usage patterns. This approach is likely to achieve more accurate
results. In this thesis, we do not use future data in this way, but this is a potential
topic for future research. [1010]

2.1.1 Measuring of Accuracy

In this section we discuss how occupancy detection accuracy should be measured.
Determining the percentage of correct predictions compared to all predictions is the
most intuitive approach. That is exactly how Prediction Accuracy Factor (PAF) is
calculated since

PAF =

k∑
t=1

Et = Gt

k
, (3)

where Gt is the ground truth defined like Et was defined in Equation (22) and k is
the total number of time bins [1111]. Meaning of Et and Gt are illustrated in Figure 22.

When the ratio is close to 1, the predictions are accurate. A ratio of 0.5 means
that the prediction method performs at chance level. PAF is commonly used in the
literature to evaluate occupancy detection methods.

PAF has its limitations since not all errors in the occupancy detection are
equal. Misinterpreting unoccupied space as an occupied can lead to extra energy
consumption. For this reason, Energy Conservation Factor (ECF) is defined as the
ratio between number correctly estimated states where the area is unoccupied and
the number of all cases when the area is unoccupied [1111]. In other words

ECF =

k∑
t=1

Et = Gt = 0

k∑
t=1

Gt = 0

. (4)

It is much worse to misinterpret occupied state as unoccupied which would lead
to bad user experience. A good example is lights turning off when the occupant is
still present but not moving. User Comfort Factor (UCF) has been introduced to



6

Figure 2: Different error types in a setup where predicted occupancy is used to
control the lighting.

account for the issue [1111]. UCF is the ratio of correctly determined time of occupancy
and the total time of occupancy [1111]. In mathematical form that is

UCF =

k∑
t=1

Et = Gt = 1

k∑
t=1

Gt = 1

. (5)

In our application, a sufficient UCF is a fundamental requirement. Excellent
energy efficiency is worth nothing if the user does not want to use the automation
because of comfort issues. [1212]

2.1.2 Classification of Errors

Occupant detection errors are divided into two sets: transition errors and spurious
errors. These are illustrated in Figure 33.

Transition errors are errors related to state transitions between occupied and
unoccupied. Transition errors can be further divided into two subcategories. Because
of sensor lag, it might take some time for the system to notice a change in the
environment. The second subcategory is the errors in the ground truth in the form
of the exact timing of the occupancy state updates. [99]

Spurious errors consist of all other error sources. A sensor being triggered by
something else than an occupant (these are later called false alarms) can cause to this
type of mistake. It is also possible that sensors do not provide enough information.
This can occur when occupants are asleep or out of range. [99]
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Figure 3: Possible errors with occupant detection.

2.1.3 Time Delay Method

The time delay method is the simplest and most common way to utilize motion
detectors. The basic idea is, that if motion is detected, the area is assumed to be
occupied for given amount of time. Longer time delays bring higher energy savings,
but it also reduces the user comfort when lights are switched off prematurely.

Von Neida et al. [1313] have done comprehensive tests with this method. They used
5 min and 20 min time delays and were able to demonstrate energy savings between
6 % and 13 % compared to manual control. It was possible to calculate PAF, UCF,
and ECF from the number given by them and these values can be found in Table 11.

Table 1: Key figures and number of test areas with the time delay method. The
values are based on research done by Von Neida et al. [1313].

Space type PAF UCF ECF N
Break room 83 % 88 % 82 % 11
Classroom 78 % 81 % 77 % 35
Conference 87 % 82 % 88 % 33
Private office 83 % 94 % 80 % 37
Restroom 51 % 95 % 40 % 42

The weighted averages are 75 %, 89 %, and 71 % for PAF, UCF, and ECF,
respectively. During the two-week monitoring period, the area was unoccupied for
most of the time, especially during nights and weekends. Since estimating occupancy
during nights is easy, ECF was much higher during nights than during day time.

Other authors have reported energy savings of 38 % [1414], 40 % [1515] and 20-26 %
[1616]. It should be noted that these studies only demonstrate the ideal potential of
the new method. Automatic control has been found to decrease the users willingness
to manually turn off the lights when exiting the area. This phenomena is called the
rebound effect and it can reduce energy savings by 30 % [1717].

There have been multiple suggestions on how to improve the time delay method.
It is possible to learn optimal values for time delays directly from the motion detector
data [1818, 1919]. This approach can greatly reduce the work required for configuring
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the devices and also save up to 37.9 % of energy usage [1818, 1212].

2.1.4 Decision Trees

The idea behind a decision tree is to divide the problem (“Is the space occupied?”) to
simpler questions (“Has the motion sensor detected movement within last 5 minutes?”
or “What is the value of CO2 sensor?”). These questions are then used to build a
decision tree, i.e. a flowchart which gives an answer to the initial problem as the
output. There are many alternative methods to find the optimal decision tree to give
accurate results with as few questions as possible.

The output of decision trees is easy to understand which is a definite advantage
compared to support vector machines or artificial neural networks (ANNs). These
methods tend to be more like a black box between the algorithm inputs and outputs.
[99]

Hailemariam et al. [99] used decision trees to detect occupancy in an office cubicle.
They collected data from motion, CO2, sound, light, and current sensors at regular
scanning intervals. Two methods were used to calculate inputs for the decision tree:
average and root mean square (RMS). The time interval for the average and RMS
varied between 1 min and 64 min. [99]

Surprisingly the best accuracy of 98.4 % was achieved by using only 2 min RMS
of the motion sensor [99]. Since only one input was used the use of decisions trees
was unnecessary.

2.1.5 Bayesian Belief Networks

Bayesian Belief Networks (BBN) model the relationships between the hidden variables
and the observed measurements. For example, detected motion can be explained by
an occupant in the area or sensor malfunctioning, which are the two hidden variables
in this case. The model can also be built to depend on earlier occupancy states.

The structure of the network is usually configured by the user, although some
work has been done to configure it automatically [2020]. It is possible for the model to
learn the conditional probabilities of the network from the ground truth.

BBNs are also easy to comprehend. BBNs can handle sensor malfunction and
can be used to give Bayesian estimates of the sensor status based on the collected
data. However, this method can be computationally expensive. [2121]

It is possible to use a BBN to model sensor reading caused by the occupants.
Dodier et al. [2121] used a setup of three PIR sensors and a telephone sensor which
indicated whether the phone was "off-hook" or not. The network was constructed
so that occupancy status affected all four sensor readings and the occupancy of the
next time step. Sensor readings were also configured to depend on the sensor status
(OK or malfunctioning) to account for faulty devices. The accuracy of the method
was not reported in the article but according to the figures a BBN seems to give
better results than a simple time delay method. [2121]
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2.1.6 Hidden Markov Models

Markov models are an approach to model dynamic systems which move randomly
between different states. They have been used to occupant detection directly [1111]
and are applied in Section 3.53.5 to model occupant movements.

The key assumption is that future states depend only on the current state. It
implies that transition probabilities are constant, and they can be summarised in a
transition matrix [2222]. An example of a Markov model is shown in Figure 44.

Room 1: unoccupied
Room 2: unoccupied

Room 1: unoccupied
Room 2: occupied

Room 1: occupied
Room 2: unoccupied

Room 1: occupied
Room 2: occupied

80 %

30 %10 %

10 %

20 %

15 %

15 %

15 % 20 %

55 % 65 %

65 %

Figure 4: An example Markov model for occupancy status of two adjacent rooms.
Percentages are transition probabilities between the states.

One way to apply such a model is to simulate the system. The next state is
chosen from the current state based on the transition probabilities. If the simulation
started from both rooms being unoccupied, the probabilities would be 80 % for
staying in the same state, 10 % for room 1 to become occupied and 10 % for room 2
to become occupied. This kind of simulation is called Monte Carlo Markov Chain
(MCMC).

In a Hidden Markov Model (HMM) the states cannot be measured directly.
Instead, the model has emissions which are visible to the observer. Emissions
depend on the state, and it is possible to estimate the actual state if the conditional
probabilities are known. Viterbi algorithm can be used to find out the most probable
sequence of states for given emission sequence.

In Figure 44 the possible sources of emissions would be motion detectors in rooms
1 and 2. Occupants usually trigger the sensors when they are present, but sometimes
they are also triggered completely randomly. Possible emissions in this case are

1. No motion detected

2. Motion detected in room 1 but not in room 2

3. Motion detected in room 2 but not in room 1

4. Motion detected in both rooms

Each state in Figure 44 would have fixed emission probabilities for these four
alternative emissions. For example, if room 1 is unoccupied and room 2 is occupied
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the most common emission would be 2. Motion detected in room 1 but not in room
2.

If the number of rooms is increased this approach becomes computationally
expensive. For just 30 rooms there would be more than one billion (109) possible
emissions. To efficiently use an HMM and the Viterbi algorithm one has to keep the
size of the model relatively small.

Batra et al. [1111] have successfully used Hidden Markov Models and Viterbi al-
gorithm to detect occupancy. In their model, there were just two hidden states:
occupied and unoccupied. The transition and emission probabilities were approxi-
mated from the ground truth. The accuracy of 97 % was achieved when the window
for data processing was between 10 s and 30 s. However, similar results can be reached
with a much simpler time delay method. [1111]

2.2 Occupant Counting

The goal of occupant counting is to determine the number of occupants in a given
area from sensor data. It is usually necessary to use a sensor capable of measuring
people count such as a CO2 sensor or a video camera.

Possible algorithms for using just a CO2 sensor are explained in Section 2.2.12.2.1 and
Section 2.2.22.2.2. ANNs can be used to combine data from different types of sensors and
estimate people count [2323]. That is discussed in further detail in Section 2.2.32.2.3.

Video cameras are another possible source of occupant count information. Cam-
eras have been used e.g. to estimate people flow rates in corridors [2424]. Kalman
filters are a good way to process this information (Section 2.2.42.2.4).

2.2.1 Steady State Algorithm with Carbon Dioxide Sensor

Average adult generates around 0,0052 litres of CO2 per second [2525]. CO2 itself
does not affect Indoor Air Quality. However, CO2 level correlates well with the
level of other occupant-generated contaminants. A CO2 concentration of more than
1000 ppm signifies that the ventilation is not high enough [2525].

In Demand Controlled Ventilation, the CO2 level is used directly to control
ventilation. The CO2 level can also be used to approximate the number of occupants.
CO2 balance can be expressed as

dCCO2

dt
=
K · S
V

+Q
C ′CO2

V
−QCCO2

V
, (6)

where CCO2 is the CO2 concentration of the space, K is the number of occupants,
S is CO2 generation rate per occupant, t is time, Q is ventilation flow rate, Cs is
the CO2 concentration of outdoor air and V is the volume of the space [2626, 2727]. In
other words, the change in CO2 concentration dCCO2

dt
equals the generation rate of

the occupants K·S
V

plus amount of CO2 in replacement air QC′
CO2
V

minus amount of
CO2 in the air flowing out QC′

CO2
V

. The equation assumes perfect mixing of the air.
Equation (66) can be derived to form

V
dCCO2

dt
= K · S −Q (CCO2 − C ′CO2) . (7)
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Derivative term is zero with the assumption that CO2 level is in a steady state. With
this assumption the number of occupants is given by

K =
Q

S
(CCO2 − C ′CO2) . (8)

In other words, CO2 produced by the occupants is calculated from the amount of
CO2 removed by the ventilation, which is further used to estimate occupant count.
[2626]

The steady state system is simple to use, but it has a noticeable delay. Labeodan
et al. [88] made a study in a meeting room and found out that the lag was about
1.5 h. The duration of the lag is highly influenced by the shape and dimensions of
the space [2525].

2.2.2 Dynamic Algorithm with Carbon Dioxide Sensor

If CO2 level begins to increase rapidly, it is immediately possible to deduce that
there must be multiple persons in the room. A scientific way to use this information
is to measure the derivative of CCO2.

Equation (77) can be written in form

K =
Q

S
(CCO2 − C ′CO2) +

V

S

dCCO2

dt
. (9)

The derivative of the concentration dCCO2
dt

can be estimated for example with the
difference quotient. [2626]

Wang et al. [2626] have tested dynamic and static algorithms with simulations. The
dynamic algorithm was found to give volatile results because of large relative error
in the derivative of CO2 concentration. They successfully used a second order filter
to smooth the results. [2626]

2.2.3 Artificial Neural Networks

ANNs mimic how human brain processes information with simple neurons. The
inputs, such as the sensor reading or earlier outputs, are processed with one or more
hidden layers to give an output value. A simple ANN is illustrated in Figure 55.

The inputs are used to calculate values of the hidden nodes. This is usually done
with a linear combination of the inputs with some constant weights and a non-linear
activation function, such as hyperbolic tangent. Connections between the nodes
represent the neurons—the weight of a connection determines if activation in the
previous layer should activate or deactivate a node in the current layer. The weights
are optimised based on the learning data to give results similar to the ground truth.

This kind of simple network can be improved in many different ways. There can be
more than just one hidden layer to make the calculations iterative. Alternatively, one
could simplify the model radically by having just one hidden layer and randomizing
the weights between the hidden layer and the inputs. This method is called extreme
learning machine, and it has the advantage of exceptionally fast and computationally
cheap learning [2828].
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Inputs Hidden layer Output

Figure 5: ANN with three input variables and one hidden layer with five nodes.
Strength of the links between the nodes, which correspond to the neurons in human
brain, are calculated from the teaching data.

It is possible to combine information from multiple different sensors with neural
networks [2929, 2323]. Yang et al. [2323] used a large set of sensor inputs: lighting, sound,
motion, CO2 concentration, temperature, relative humidity, reflector (infrared), door
status, 1 min motion count, 1 min reflector count, 1 min door count, 5 s sound average,
and 5 min sound average. According to a principal component analysis, the least
significant inputs were 5 min sound average, door status, and temperature. These
were excluded from the analysis. [2323]

The remaining nine inputs were analysed with a back propagation ANN. Ground
truth data was collected with a mobile device to which the occupants had continuously
updated the number of people in the room. The ground truth was used to teach the
ANN. A multi-layer ANN resulted to the best accuracy of 92 %.[2323]

One should note that the light sensors were one of the key sensors used by the
ANN. The lights were operated manually by the users. If the goal is to use the
occupancy information to control lights automatically, it is not possible to use the
light sensor data in this way. Furthermore, it is challenging to collect enough ground
truth data from an actual installation site. Configuring an ideal system should not
require any manual input from the end users.

In a test environment, it is possible to collect an adequate amount of ground
truth data to teach an ANN. In our application, this is not the case since it is not
feasible to gather ground truth data from all new sites.

2.2.4 Kalman Filters

In an area with a large number of rooms, or other areas of interest, one approach is
to base the estimates on people flow. If one can measure the amount of occupants
moving from one zone to another, the amount of people in each zone can also be
estimated. Kalman filters are a good method to estimate the occupancy count from
people flow measurements.

Kalman filter is an elegant method for combining earlier information with new
measurements [3030]. The goal is to approximate state vector xt at time t. In target
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tracking, described in Section 2.32.3, a common choice of variables in x are location,
speed, and possibly acceleration [44]. The system is assumed to follow

xt+1 = Fxt + wt, (10)

where F is the state transition model and wt is white noise. In other words, the
next state of the system is a linear function of the previous state plus a random
variable. Kalman filter also estimates the error of the state variables in the form of a
covariance matrix. When the state vector is updated based on a new measurement
more weight is given to the previous state estimates with a small error.

CO2 measurements have been successfully integrated with people flow measure-
ments [2424] with this method. Meyn et al. [2424] used closed-circuit television video
cameras to measure the people flow rates at the corridors.

State vector xt consisted of the number of occupants in areas of interest and rate
of occupants moving from one area to another. Even though the number of people is
a vector and moving rate is a matrix, they both consist of a fixed number of variables
which can be listed into a single vector. State transition model F was built based on
the fact that the total number of people is conserved.

The method was able to estimate the current occupancy information with live
data. Even better results were achieved by analysing the history data of a whole day.
With this method, the prediction accuracy was 89 % [2424].

2.3 Target Tracking

In this section, we go over relevant earlier research in target tracking. The tracking
algorithm we developed in this thesis (described in Chapter 33) is based on some of
the topics introduced in this section. For this reason, the reader should pay extra
attention to global nearest neighbour (Section 2.3.22.3.2) and multiple hypothesis tracking
(Section 2.3.32.3.3).

Target tracking has been initially developed for radars. The key problem is how
to associate the measurements with the targets. When the association is done, each
location for each target can be updated with its measurements. Radars usually
do this with a Kalman filter. Principal components of a typical target tracker are
illustrated in Figure 66. [44]

Receive new 
measurements

Associate 
measurements

Existing tracksNew tracksClutter

Update tracks
Create new 

tracks

Delete tracks 
with no recent 
measurements

Current 
hypothesis

Figure 6: Outline of a typical single hypothesis tracking algorithm.
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When new measurements arrive they are first associated with clutter (false alarms),
new tracks or existing tracks. Association can be done with multiple methods some
of which are described in sections 2.3.12.3.1, 2.3.22.3.2, 2.3.32.3.3, and 2.3.52.3.5.

New track associations are processed with the initiator logic which creates new
tentative tracks. Since a single false alarm could have caused the tentative track,
they are not shown to the user. Most simple method to confirm tentative tracks
is to require a certain amount of measurements within the first seconds (initiator
lifetime). Alternatively this can be accomplished with score based approaches [44].

Measurements associated with one of the current tracks are used to update the
track. In a typical radar solution, Kalman filter is used for this purpose [44]. If the
speed or acceleration of the target has been estimated, these can be used to update
the position of the target even without an associated measurement.

In the final step tracks without enough recent updates are deleted. One possibility
is to check if there has been a required amount of measurements within a predefined
track lifetime. For tentative tracks, the lifetime usually is shorter or required amount
of measurements is higher compared to confirmed tracks.

The algorithm has now computed an updated list of tracks (current hypothesis)
which can be used to explain next set of measurements.

To speed up the computations, gating of the measurements can also be used. The
idea of the gating is to eliminate impossible associations as soon as possible. One
way to do this is to consider only associations to targets which are within a gating
radius from the measurement.

2.3.1 Local Nearest Neighbour

Local Nearest Neighbour (LNN) is a method suitable for mainly single target tracking.
Targets are simply associated with the nearest available measurement. The same
measurement can be associated with multiple targets. [44]

Figure 77 shows an example of the association problem. LNN solution would be
to associate T1 7→ y1

k, T2 7→ y2
k and T3 7→ y2

k.
Measurements, which are outside of the gating of all currently tracked objects,

are usually used to initiate new tracks. Best practice to handle unused measurements
within the gating depends on the application. Using them to initiate new tracks is a
good idea if targets usually cause just one measurement. In the case of PIR sensors,
it is common that targets trigger multiple sensors simultaneously. Using the other
measurements to initiate new tracks would lead to having multiple tracked targets
for a single actual target. Discarding all unused measurements within the gating
would thus be a good idea.

At some points, multiple tracked objects start to overlap. Overlapping targets
are always associated with same measurements. Merging similar tracks could solve
this issue. However, it is more convenient to use a more advanced algorithm such as
Global Nearest Neighbour (GNN).
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Figure 7: An example of association problem with three tracked targets (T1, T2, and
T3) and two measurements (y1

k and y2
k). Circles represent the gating windows.

2.3.2 Global Nearest Neighbour

With GNN each measurement is associated with only one target, and each target
has a maximum of one associated measurement. This method is superior to Local
Nearest Neighbour.

Association is usually done by constructing an association matrix. Rows corre-
spond to different measurements while columns are targets, new targets (NT), and
false alarms (FA). An association matrix for situation in Figure 77 would be

T1 T2 T3 FA1 FA2 NT1 NT2

y1
k 0.015 0.3 0 0.01 0 0.02 0
y2
k 0 0.4 0.03 0 0.01 0 0.02

. (11)

This matrix has three currently tracked targets (T1, T2, and T3) and two measure-
ments (y1

k and y2
k). The probabilities can be calculated with Bayes’ theorem similar

to our approach in Section 3.43.4. According to the matrix probability of association
y1
k 7→ T1 is 0.015, y1

k 7→ T2 is 0.3 and so on. The probability of false alarm is 0.01
and probability of a new track is 0.02. If there had been just a single measurement
y1
k, we would choose association y1

k 7→ T2 because of the maximum likelihood.
The most likely explanation for the second measurement is also T2. That would

violate the basic principle of global nearest neighbour that each target can have one
associated measurement. The alternative possibilities are y1

k 7→ T2, y2
k 7→ T3 and

y1
k 7→ NT1, y2

k 7→ T2. The combined probabilities of these examples are 0.3 · 0.03 =
0.009 and 0.4 · 0.02 = 0.008, respectively. In this case, y1

k 7→ T2, y2
k 7→ T3 would be

the most likely association.
The general assignment problem is to choose one cell from each row so that the

sum of the cells is maximised. In our case, we need to maximise the product of
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the elements. The matrix can be transformed to the correct form with logarithm
function. Instead of maximising the product, one gets the same result by maximising
the logarithm of the product. The logarithm of the product is equal to the sum of
the logarithms. With the numbers of the previous example, this means that the log
probability (which is to be maximised) is

log (0.3 · 0.03) = log (0.3) + log (0.03) . (12)

There are many ways to solve the assignment problem. Auction algorithm mimics
an auction where each customer (measurement) wants to buy exactly one of the
multiple items (tracks, FA, NT). Blackman [44] has given a good description of the
algorithm.

2.3.3 Multiple Hypothesis Tracking

Multiple Hypothesis Tracking (MHT) was first proposed by Reid et al. [3131]. The
association decisions are in one sense approximations which lead to loss of information.
The core idea of multiple hypothesis tracking is to delay the making of association
decisions. That enables the use of the association which best corresponds to the
future measurements.

These different association decisions are formulated as multiple hypotheses with
different weights. The weights are calculated from the probabilities of the hypotheses.
Probability is calculated from probability of the parent hypothesis times probability
of the association. It is generally useful to normalize the sum of the probabilities to
one.

Each measurement is used to generate new hypotheses from all current hypotheses.
There has to be a process to delete some hypotheses since the number of hypotheses
would otherwise grow exponentially. Possible methods include low probability
hypothesis pruning, N-scan pruning, and hypothesis merging [44]. In the method
described in Chapter 33, only low probability hypothesis pruning and hypothesis
merging are used.

2.3.4 Binary Sensor Network

Binary Sensor Network (BSN) is a collection of binary sensors, such as motion
detectors. When the number of sensors is high enough, a BSN can be used to
approximate the location of a target. Target tracking is suitable for this purpose
because of its ability to combine previous hypotheses with new measurements. [1010,
77]

Aslam et al. [77] have developed an algorithm for BSNs based on particle filtering.
With their simulations, they were able to show some fundamental limitations of a
BSN such as the existence of indistinguishable tracks.

2.3.5 Monte Carlo Markov Chain Data Association

Monte Carlo Markov Chains Data Association is an approach for data association
designed especially for BSNs. Association is built iteratively from an initial guess.
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MCMC is used to generate new associations from the current one. This algorithm is
presented only for completeness on a theoretical level and is not used in the practical
part of this thesis.

Let Yt be all measurements up to time t. Y 1
t , Y 2

t ... Y K
t are the sets of measure-

ments associated with targets 1, 2... K. Y 0 is the set of false alarms. Partition ωt is
the set of vectors Y i

t

ωt =
{
Y 1
t , Y

2
t , ...Y

K
t

}
. (13)

New partitions are generated in MCMC with the goal of finding a partition which
explains the data as well as possible. The algorithm starts with an initial guess
for ω0

t . A new partition is generated from the current partition with some simple
alternations, such as creating new targets or extending the current targets to account
for more measurements. The probability of the new partition is evaluated. If this
probability is larger than a random number between 0 and 1 the algorithm moves
to the new partition. The new ωt is then used to a generate a new generation of
possible partitions. [1010]

The probability of a partition can be calculated with Maximum a Posteriori
method. Partition with maximum posterior probability P (ω|Yt) is considered the
best solution. [1010]

Chen et al. [1010] have used this method to track people in an open field with a
binary sensor network. They used 144 PIR sensors in a 12x12 grid with 5 meter
spacing between the sensors. Since each iteration of the algorithm processes all
measurements up to time t it is not feasible to use this method on a live system.
The method is designed for processing history data. [1010]

2.4 Summary of Earlier Research

Summary of the research described in this chapter be found in Table 22. PAF has
been calculated with Equation (33) in the case of occupant detection. For occupant
counting the table lists the reported accuracy. Unfortunately, the method to calculate
this varies from article to article and the numbers are not always comparable.

It is surprising that the time delay method gives much worse results than other
occupant detection methods [1313]. A possible explanation is that the test was done
with a less than optimal setup.

Decision trees [99], BBNs, [2121] and HMMs [1111] have been successfully used for
occupant detection. PAF of these methods is 97 % - 98 % and based on the published
information it is not possible to tell if any of these methods is superior to the others.
It is noteworthy that similar results have been achieved with much simpler algorithms
[99, 1111].

The CO2 sensor is a natural choice for occupant counting. The dynamic algorithm
can give reliable results in the right algorithm [2626]. ANN is a good candidate to
combine information from multiple different sensors but also requires plenty of
teaching data [2323, 2929]. If one is willing to use video cameras, it is possible to use
them to measure people flow rates in the entrances and exits of the area of interest
[2424].
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Table 2: Overview of relevant earlier work in the fields of Occupant Detection (OD),
Occupant Counting (OC) and Target Tracking (TT)

Author PIR Other sensors Goal Methods Acc.
Von Neida [1313] Yes - OD Time Delay 75 %
Hailemariam [99] Yes Multiple OD Decision tree 98 %
Dodier [2121] Yes Telephone OD BBN 98 %
Batra [1111] Yes - OD HMM 97 %
Labeodan [88] No CO2 OC Steady state 35 %

CO2
Wang[2626] No CO2 OC Dynamic CO2 -
Yang [2323] Yes Multiple OC ANN 92 %
Meyn [2424] Yes CO2, cameras OC Kalman filter 89 %
Chen [1010] Yes - TT MCMC -

Target tracking has been successfully used with binary sensors [1010]. It is possible
to track multiple targets and even calculate their position based on only PIR sensors.
To the author’s knowledge, target tracking has not been applied to occupancy
detection before.
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3 Target Tracking in a Discrete Network
In this chapter, we describe our new proposal for tracking algorithm designed to
handle discrete positions. The goal of our occupancy algorithm is to do occupancy
detection as accurately as possible. Sensor adjacency information cannot easily be
utilised with any other method but it gives valuable information about the structure
of the space.

Position is typically considered to be continuous in target tracking. This approach
is natural since a radar can measure position on a continuous scale. A binary sensor
network is not able to provide this kind of information directly. It is still possible to
calculate the continuous position from multiple observations [1010, 77]. That requires
the locations of the sensors and their ranges to be well known.

In our case, the exact positions of the sensors are not known. It is possible to
estimate the location and use them for target tracking in a Binary Sensor Network
(BSN) [66]. The efficiency of this approach depends highly on how accurate the
positioning algorithm is. If the locations have a lot of error, the tracking algorithm
cannot be expected to give good results. Discrete positions make the algorithm
simpler to implement while still being accurate enough for our application.

We use only the minimal information about the structure of the space, which is
modelled with a Hidden Markov Model (HMM) described in Section 3.53.5. PIR sensor
signals correspond to HMM emissions (see Section 2.1.62.1.6). Initially, the transition and
emission probabilities are given to the model as parameters, but it is also possible to
calculate them from passive Infrared (PIR) sensor data (see Section 7.27.2).

Conventional tracking algorithms process the measurements in static time steps.
In other words, time is treated as a discrete variable. It is often helpful to handle
multiple measurements simultaneously since every time the algorithm abandons a
hypothesis, information is lost permanently. A single hypothesis model discards
all but the most likely hypothesis. Multiple hypotheses model can keep a limited
amount of alternative hypotheses in memory, but some information is still lost in
the hypotheses which are pruned off. [44]

Processing multiple observations at the same time complicates some issues. Global
Nearest Neighbour (GNN) uses auction algorithm to decide how observations are
associated with targets [44] as was explained in Section 2.3.22.3.2. There is no need for the
auction algorithm since there is only one observation. In Section 3.13.1, we show how
new hypotheses are generated from all possible movements. This kind of functionality
might be challenging to implement for multiple observations.

Another issue to consider is sensor triggering frequency. Discrete time models are
useful if the targets trigger the sensors constantly. Our sensors trigger a few times in
a minute, so processing observations individually is more viable.

3.1 Generation of hypotheses

The algorithm maintains multiple hypotheses about the possible state of the system.
In practice, a hypothesis consists of tracked targets (their states and some information
about their history) and a probability of the hypothesis. This information is sufficient
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to calculate a new generation of hypotheses efficiently. In a mathematical sense, a
hypothesis can be viewed as a set of previous association assumptions.

In a typical Multiple Hypothesis Tracking (MHT) system new hypotheses are
generated from different associations of the measurements [44]. In the discrete case,
there is also the possibility of generating new hypotheses from separate movements
of the tracked targets.

Let Θ be an association and movement hypothesis for measurement yk

Θ : yk 7→ (T,N). (14)

In other words, Θ is a mapping from the observation yk to targets T and nodes N .
A given Θ means that target Tn has moved to Nm and caused PIR measurement
yk from there. In the framework of an HMM, we can also say that Tn emitted yk
(see Section 2.1.62.1.6). To account for new tracks and false alarms, indexes n = 0 and
n = −1 are used respectively.

Hypothesis H is defined as

H = {Θ, Ĥ}, (15)

where Ĥ is the parent hypothesis from the previous time step. This recursive formula
implies that H is the set of all association and movement hypotheses Θ up to that
time.

Generating new hypotheses based on different movements is extremely useful in
the case of a still target which frequently triggers sensor in an adjacent node. This
phenomenon is illustrated in Figure 88.

The first diagram (a) in Figure 88 is the current hypothesis with one tracked target.
Motion is detected at node N2. Possible associations are

1. Target did not move and triggered N2 from its current position. This leads to
scenario (b).

2. Target moved to the adjacent node and triggered N2 from there. This leads to
scenario (c).

Figure 8: Current hypothesis (a) and three possible new scenarios (b, c, and d) due
to a measurement from motion detector N2.
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3. yk was a new track alarm. This leads to scenario (d).

4. yk was a false alarm. This leads to scenario (b).

Since associations 1 and 4 result in the same outcome (the scenario in Figure 88
b), they would be merged as is described in Section 3.23.2.

Based on this one observation, the first two scenarios are the two most likely ones.
If the next observation comes from N1 the MHT algorithm would adapt hypothesis
2 as the most likely scenario. The next iteration could also be based on hypothesis 1
in the case the next observation is from N3. If there are future measurements from
both N1 and N3 then hypothesis 3 with a new target can become the most likely
option.

3.2 Hypothesis Merging and Pruning

It is common that different associations lead to very similar hypotheses after a few
time steps. In the case of discrete positions, this becomes even more important as
it is possible that the two hypotheses have exactly same tracked target positions.
In these cases, it is a good idea to merge the two hypotheses. Figure 99 shows how
hypotheses 1 and 2 have identical tracked target positions and can be merged to
hypothesis 3.

The probability of the merged hypothesis is simply the sum of the two prior
probabilities. Last update time of the tracks can be merged with different approaches.
We simply take the weighted average based on the probabilities of the hypotheses.

Hypothesis #1
Probability = 0.042

Tracked targets
Position Last update
1 16:04:05.412
3 16:04:22.974
4 16:04:12.100

Hypothesis #2
Probability = 0.021

Tracked targets
Position Last update
1 16:04:05.412
3 16:04:12.100
4 16:04:37.120

Hypothesis #3
Probability = 0.063

Tracked targets
Position Last update
1 16:04:05.412
3 16:04:19.683
4 16:04:20.107

Figure 9: Merging of Hypothesis 1 and Hypothesis 2 into Hypothesis 3. The
hypotheses can be merged because the target positions are identical.
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In the example of Figure 99, last update time of track 3 is calculated from

0.042 · 16:04:22.974 + 0.021 · 16:04:12.100
0.042 + 0.021

= 16:04:19.683. (16)

The field of last update only affects the deletion of the tracks. The exact value of
that variable is not crucial since it is used only to tell the difference between active
and inactive tracks.

Merging is a good start for limiting the number of hypotheses, but alone it is not
sufficient. Our approach also uses pruning. At the end of each iteration loop all but
M most probable hypotheses are deleted.

3.3 Track Initiation and Deletion

In MHT, new track initiation is done with alternative hypotheses. Therefore, it is
not necessary to use initialisation logic described in Section 2.32.3.

For every new measurement, a hypothesis is created to account for this measure-
ment being caused by a new track. Possible nearby tracked targets are usually more
probable explanations for the observation. In these cases, the hypothesis with a new
target will soon get pruned off.

If there are no nearby tracked objects, possible explanations are a false alarm
and a new track. It is usually preferable to choose parameters so that false alarm is
a more probable explanation for a single observation than a new track [44]. In our
case, we decided to choose λNT > λFA because of the low rate of false alarms with
PIR sensors. Thus a single new observation creates a new confirmed target and an
alternative false alarm hypothesis with a smaller probability.

Tracked objects are deleted if there have not been updates to them in a given
time period, which is also called lifetime of the targets. This lifetime can depend on
the location of the target. In a border node from where targets frequently leave the
monitored area, it is beneficial to have a relatively short lifetime, i.e. to delete the
targets quickly after they have exited.

There might be interior areas from which exiting is not possible but which are
outside the line of sight of the sensors, such as the locations of the occupants in
Figure 11. Deleting the targets too early would result in errors in these cases. That
can be avoided by setting the lifetime of the targets longer in the interior nodes.

In Chapter 44 we introduce two lifetime parameters: one for interior nodes and
one for border nodes. Nodes in the vicinity of exits of the monitored area should be
configured as border nodes. Interior nodes can include exits to some rooms as long
as occupants always have to return to the monitored area before leaving entirely.
That allows the tracker to keep them in the model even when they cannot be directly
detected by the sensors.

Deletion of tracks could also be done by generating potential hypotheses to
account for them being deleted and not deleted. However, this is not computationally
efficient since deletion hypotheses would have to be created at every time step for
every tracked target. The number of hypotheses would grow too high, and the
deletion hypotheses would end up being pruned off. [3232, 3333]
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3.4 Probability of a Hypothesis

Equations given in this Section were derived by us for this specific model. We used
Bayes’ theorem to reformulate the probability of hypothesis H for given observations
up to time k. When the theorem is practiced with only to the most recent observation
yk

P (H|Yk) = P (H|y, Yk−1) =
P (yk|H, Yk−1) · P (H|Yk−1)

P (yk|Yk−1)
(17)

Since P (yk|Yk−1) does not depend on H, it can be considered constant. Equation (1515)
can be applied to term P (H|Yk−1) to get a linear relationship

P (H|Yk) ∝ P (yk|H,Yk−1) · P (Θ|Ĥ, Yk−1) · P (Ĥ|Yk−1). (18)

The probability of yk and Θ depend only on the new hypothesis and the parent
hypothesis, respectively. Yk−1 does not affect their conditional probability so it can
be removed from these terms.

P (H|Yk) ∝ P (yk|H) · P (Θ|Ĥ) · P (Ĥ|Yk−1) (19)

Equation (1919) corresponds to the fundamental theorem of target tracking [44].
The second term in Equation (1919) is the probability of target Tn moving to

node Nm and other targets not moving. In the case of false alarm or new track
association, none of the targets move. For false alarm association (n = −1) one
needs to compute the probability of targets staying at their current locations. For a
new track association (n = 0) this has to be multiplied by the probability of a new
track emerging in node Nm. All these cases can be combined to equation

P (Θ|Ĥ) =


1 if n = −1

P∆t(a new track at Nm) if n = 0

P∆t(Tn moved to Nm) otherwise.
(20)

To be mathematically exact we should also include P∆t(no new track at Nm) to
the first and last line. In practice, this is not necessary since the probability of a
new track is tiny. Thus, the complement probability can be approximated as one.

Furthermore, this formula is missing the terms for targets j 6= n not moving. The
reason for this is, that if these probabilities were included it would also be required
to create new hypotheses for all the possible movements. For a single target this
could be done, but for a larger number of targets, the complexity of the algorithm
grows exponentially.

The first term in Equation (1919) is the probability of Tn emitting yk and other
targets not emitting anything. Because the probability is conditional for given H,
Tn is assumed to be located at node Nm. When n = −1, the term corresponds to a
false alarm at Nm and no emissions from the targets. In mathematical from this is

P (yk|H) =


P∆t(false alarm at yk) ·

∏
j

P∆t(Tj didn’t emit) if n = −1

P∆t(yk emitted from Nm) ·
∏
j

P∆t(Tj didn’t emit) if n = 0

P∆t(yk emitted from Nm) ·
∏
j 6=n

P∆t(Tj didn’t emit) otherwise.

(21)
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In these equations, products over j are computed only for the previously recognised
targets. For n = 0 the product does not include the new target. The same notation
is be used for the rest of this chapter.

The last term P (Ĥ|Yk−1) in Equation (1919) is the probability of the parent
hypothesis Ĥ. The probability of a hypothesis can be calculated recursively using
Equation (1919), Equation (2121), and Equation (2020).

Since same parent hypothesis is used generate multiple new hypotheses it is
possible to speed up the calculation by defining

CĤ =
∏
j

·P∆t(Tj didn’t emit). (22)

Equation (1919) can now be written in form

P (H|Yk) ∝ AH · CĤ · P (Θ|Ĥ) · P (Ĥ|Yk−1), (23)

where AH is similar to Equation (2121)

AH =


P∆t(false alarm at yk) if n = −1

P∆t(yk emitted from Nm) if n = 0
P∆t(yk emitted from Nm)
P∆t(Tn didn’t emit) otherwise.

(24)

Most of the time this algorithm should be run only when a new observation
arrives. There should also be a way to handle extended periods of not getting any
measurements. Regular updates can be run without any new observation to keep
the list of hypotheses up to date. In this case, each current hypothesis Ĥ is used
to form only one new hypothesis H which are given relative probabilities according
to Equation (2323). Because there is no observations AH = 1 and since none of the
targets is moving P (Θ|Ĥ) = 1.

P (H|Yk) ∝ CĤ · P (Ĥ|Yk−1), (25)

It is possible that this calculation changes the most likely hypothesis. CĤ is
larger for hypotheses with a smaller number of targets.

Because constant P (yk|Yk−1) from Equation (1717) was not calculated, the number
we get here is only proportional to the actual probability. As the final step of the
calculation, the probabilities should be normalized so that their sum is equal to one
to keep their order of magnitude practical [44]. In our method, we normalize the sum
of probabilities over all hypothesis to one.

It could also be possible to normalize the probability of all new hypotheses for
the same parent hypothesis into 1 [3333]. The disadvantage of this method is, that if
there is only one child hypothesis (e.g. in the case of no new observations), it gets
the same probability as its parent hypothesis. That is undesired behaviour since
the lack of new observations does not decrease the probabilities of hypotheses with
multiple targets.
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3.5 Calculating Probabilities from the Markov Model

In this thesis, movements and emissions of tracked targets are modelled with a
continuous time multi-agent Markov model. Sensor nodes correspond to Markov
model states. Markov model agents represent the tracked targets which move between
the states. Only a list of neighbours for each node is required to build a Markov
model; it is not necessary to know the exact positions of the nodes.

In this section, we use false alarm rate ΛFA, new track rate ΛNT , emission rate
matrix ΛE and transition rate matrix ΛT to compute all probabilities required in
Section 3.43.4. These four parameters contain all the information we need about the
sensor type and placement. They can be configured manually or possibly computed
with some of the methods discussed later in Section 7.27.2.

We can now proceed to calculate probabilities in Equation (2020) and Equation (2424).
Let us assume that false alarms are Poisson distributed and let λFA be the false
alarm rate. Exponential distribution estimates the distribution for time interval t
(t ≥ 0) between the beginning of the observation and a false alarm. Probability
density function for exponential distribution is

f(t) = λFAe
−λFAt. (26)

Cumulative distribution corresponds to the probability that the false alarm occurred
before given time ∆t. Cumulative distribution for exponential distribution is the
integral of the probability density∫ ∆t

0

f(t)dt =

∫ ∆t

0

λFAe
−λFAtdt = 1− e−λFA·∆t. (27)

That is also the probability of a false alarm in Equation (2424)

P∆t(false alarm at yk) = 1− e−λFA·∆t. (28)

Respectively, the probability of a new track can be calculated from new track rate
λNT

P∆t(a new track at Nm) = 1− e−λNT ·∆t. (29)

The first matrix to describe the relationships between the nodes is emission rate
matrix ΛE. In the most simple case, the matrix has elements only in the main
diagonal. These elements are rates at which targets trigger the motion sensor of
their current node. PIR sensors often have overlapping lines of sight. They get easily
triggered by targets which are closer to adjacent sensors than them. The element
ΛE[i, j] is the rate at which target at node i triggers a sensor at node j.

E∆t is used to denote the emission matrix for time step ∆t. The probability of a
sensor at node j being triggered by a target at node j within the time period ∆t can
be calculated with a similar logic we used for Equation (2828).

E∆t[i, j] = 1− e−∆t·ΛE [i,j]. (30)

Probability in Equation (2424) is an element in the emission matrix

P∆t(yk emitted from Nm) = E∆t[Nm, yk]. (31)
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The probability of tracked target not emitting at all is used in Equation (2222) and
Equation (2424). Target Tn at node Nm not triggering a sensor in node i has probability
of 1−E∆t [Nm, i]. The probability Tn of not triggering a sensor anywhere is product
of these probabilities or in other words

P∆t(Tn didn’t emit) =
∏
j

(1− E∆t [Nm, j]) . (32)

Transition rate matrix ΛT is also linked to the relationships between the nodes.
Element ΛT [i, j] (where i 6= j) represents the flow rate of tracked targets from node
i to node j [2222]. The diagonal elements are defined so that sum of each row is zero:

ΛT [i, i] = −
∑
j 6=i

ΛT [i, j]. (33)

Transition rate matrix can be used to compute transition matrix. Theory of
continuous time Markov models is outside the scope of this thesis, but those interested
can find more information from Norris’ book [2222]. The transition matrix for given
time step ∆t is given by exponential function

T∆t = e∆t·ΛT . (34)

Note how this equation is different from (3030). Instead of taking the exponential
function for scalars, one has to use the exponential function for matrices. [2222]

Element T∆t[i, j] is the probability of tracked object moving from node i to j
within time period of ∆t. That is equal to the probability in Equation (2020)

P∆t(Tn moved to Nm) = T∆t[sTn , Nm], (35)

where sTn is the position of target Tn.
When ∆t → 0, transition matrix approaches to the identity matrix. That is

intuitive since when the time step is small enough, it is unlikely that target has
moved away from any of the nodes. [2222]

3.6 Adding of an Initialisation Hypotheses

A hypothesis without any targets can increase its probability rapidly according to
Equation 2525 when all occupants have left the area. The existence of this kind of
hypothesis can have a large impact on the outcome of the tracker. If the maximum
number of hypotheses is small, empty hypothesis is not usually included in the list
of hypotheses. If something goes wrong and the occupants manage to leave without
the tracker noticing, it has to wait LI to be able to delete the targets and acquire a
hypothesis without any targets.

This method can be considered as a way to initialise the tracker with a small
probability. The probability of the new hypothesis was set to one tenth of the
probability of previously least likely hypothesis.
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3.7 Algorithm Outline

In this chapter we went through the details of an applied target tracking algorithm.
The steps can be summarised as following:

1. Receive a new observation yk or receive the trigger to run the algorithm without
an observation.

2. Generate all possible association hypotheses for each parent hypothesis Ĥ.

3. Generate all possible movement hypotheses for each association hypothesis.
This and the previous step correspond to Equation (1414). Calculate probabilities
of the hypotheses with Equation (2323) or (2525).

4. Delete tracks which have no recent observations as described in Section 3.33.3.

5. Combine hypotheses from different parent hypotheses to a single list. Merge
similar hypotheses as described in Section 3.23.2.

6. Limit the number of hypotheses to M most probable hypotheses as described
in Section 3.23.2.

7. Add initialisation hypothesis as Section 3.63.6 describes.

8. Normalize the sum of probabilities of the hypotheses to one.

The algorithm begins with just one hypothesis, which has no tracked targets and
has a probability of 1.



28

4 Materials & Methods
Let us now focus on the methods for testing these approaches in practice. Section 4.1.14.1.1
describes the characteristics of passive infrared (PIR) sensors, which are be used as
the primary data source. Different test setups are explained in Section 4.24.2. Finally,
in Section 4.34.3 we return to target tracking and decide how the parameters mentioned
in Chapter 33 should be chosen.

4.1 Test Equipment

The test equipment consists of three parts

1. Motion sensors with a binary output (see Section 4.1.14.1.1)

2. Node modules which read the value of the motion sensors and send a wireless
message if motion has been detected. They also listen to the wireless messages
sent by other nodes and change their states according to their internal logic.

3. Gateway, which listens to all wireless messages, writes them into a log file and
(optionally) uploads the data to the Internet.

Wireless messages are sent not only because of the detected motion but also from
state transitions of the nodes. The exact nature of these states is not relevant to this
work. It is only necessary to know that there are five states and that the devices
broadcast all their state transitions. That allows us to estimate the success rate of
the wireless connection with the method described in Section 4.1.24.1.2.

4.1.1 Motion Sensor

We used Helvar Active+ Sense sensors [3434] in all test setups. They consist of a PIR
sensor and a photodetector. The photodetector was not utilised in this thesis, but
we discuss it in Chapter 77. Picture of the sensor can be seen in Figure 1010.

Figure 10: Helvar Active+ Sense and a coin for scale. PIR sensor is on the left and
light sensor is on the right.
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The angle of coverage for PIR sensor is 80°. When the sensors are placed at the
height of 2 meters they cover an area with a radius of approximately 2 meters. Our
method for generation of hypotheses (Section 3.13.1) is based on the assumption that
targets trigger sensors also in the adjacent nodes. If the distance between the sensors
is less than 4 meters, this assumption is justified.

4.1.2 Estimation of Success Rate

A state transition message contains both the previous state and the next state. This
information allows us to approximate the probability of the gateway successfully
receiving a message from a given node. First, the number of messages where the
previous state differs from the next state of the previous message is calculated and
labeled as NF . It is guaranteed that one state transition message has been lost
between these two messages. Thus NF is the lower limit of lost messages.

We can detect a lost message only if that message has contained an actual state
transition. Therefore, NF should be compared to the total amount of messages
containing a state transition. If the count of successfully received state transitions
is NS, the total number of this kind of messages is NF +NS. So the lower limit of
error rate is

R =
NF

NS +NF

(36)

Note that this equation should only be used if R is small. If the error rate is high,
it is more likely that two lost messages cancel each other out, and the error is left
undetected.

4.2 Test Setups

In this thesis, we used four different test setups for different purposes. The first
setup generated simulated data on a single computer and used that to test different
types target tracking in a corridor. The test installation described in chapter 4.2.24.2.2 is
also ultimately a simulation, but in this case, only motion detectors (Section 4.1.14.1.1)
were simulated. Remote nodes sent the motion sensor data to the wireless network,
which was first collected and logged by a Gateway and only after that analyzed with
the target tracking algorithms.

In the controlled test environment case study real PIR sensors were attached to
the remote nodes in a small office area. The output of these sensors was saved to the
Gateway and later analysed with the target tracker. The movement of the occupant
was documented manually and then compared to the output of the tracker.

In an actual open office, it is hard to collect accurate ground truth data. In the
last test setup, we only tested if the method gives plausible results and how they
compare to the time delay method.

4.2.1 Simulated Corridor

A single corridor is an uncomplicated environment for initial target tracker tests.
Since position has only one dimension, it is easy to visualise position and time in a
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two-dimensional chart. We generated simulated data from a corridor to test how the
algorithm can handle two targets which move past each other. Such test is common
for the testing of the core functionality of a target tracker since it is simple, provides
real challenges to the algorithm, and is easy to visualise in two dimensions.

The simulation consisted of 30 sensor nodes. Simulated targets could only move
to the adjacent nodes: they stay still or move one step up or down. The targets
were simulated to trigger measurements in both their current node and the adjacent
nodes. Clutter was also generated by sending completely random observations to
the tracker.

4.2.2 Test Cabinet

More advanced tests were done with a test cabinet. The test cabinet consisted of
25 sensor nodes simulating open office area with a 5 by 5 grid of PIR sensors. A
computer was used to simulate the occupants and send motion detector signals to
the nodes. The central goal of this setup was to test the wireless connections and
software of the nodes, but the data was also found useful in the development of the
target tracker.

Entrance
and exit

Door to
the meeting

room

Figure 11: Left: Paths of two occupants have been illuminated in the test cabinet.
Right: Layout of the simulated office.

The simulation consisted of four occupants who came to the office in the morning,
had some periods of absence during the day (meetings, lunch) and left in the evening.

The targets triggered nodes while moving. When they were sitting at their desks,
they triggered the nearest sensor once every 30 s to 35 s. Of course, this is not very
realistic since the interval between the observations is always over 30 s. Additionally,
there was no motion simulated to the adjacent sensors. However, the advantage of
this setup is that the ground truth is very accurate, and the data are thus suitable
for our parameter optimisation.

4.2.3 Controlled Office Environment

These tests were performed in an empty office building. The test setup consisted
of eight nodes with PIR sensors. Sensor placement is shown in Figure 1212. Sensor
numbers also shown in the figure are used in Section 5.3.25.3.2.
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Figure 12: Test layout (left) and a picture of the area (right). PIR-sensors are
marked with red.

On the left, we can see the layout of the office area, sensor positions (red) and
areas where the occupant spent time (A-E). The picture on the right is a from the
same area. Five sensors inside of the room are highlighted with red circles. Areas B
and E are also visible in the picture. Area D is behind of the gray screen on the left.
Test arrangement had two exits (A and C). The three nodes in the corridor can only
be seen on the layout but not in the picture. These were defined as border nodes in
the target tracker.

If the occupant was spending time at position D, the motion sensor was able to
detect him sporadically. At positions B and E the sensors were so far away that
constant measurements were not possible. This setup was designed to demonstrate
the capabilities of the target tracker to "remember" that an occupant had entered
these areas and to keep the area in occupied state until the occupant is detected
leaving the area entirely.

During the test, accurate notes about the positions of the occupants were made.
They were used to generate a ground truth data set which indicated exactly when
the area became occupied and unoccupied. This dataset is utilised in Section 5.35.3
and Chapter 66 to calculate the key ratios for real sensors.

4.2.4 Case Study in an Open Office

Eight test sensors were placed into a small open office area. Figure 1313 shows the
layout of the room and sensor placements.

In this test case, the gateway was not only recording the PIR observations and
writing them into a log file but also sending all measurements to a cloud server.
Target tracking was done on the server with the real time data.

This setup enables extending the system to a wider area where it is not possible
to establish a connection between all of the nodes and the gateway. Limitations
of the wireless network in our use are not known, but this would certainly require
dozens of nodes. In this case, there could be multiple gateways collecting the data.
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Figure 13: Office floorplan, sensor nodes and used internode adjacency relationships.
Green and red represent border and interior nodes, respectively.

It also ensures that there is always enough computational resources for the target
tracking.

Unfortunately, we were not able to collect the ground truth data from this test
installation. Thus in the analysis of results in Section 5.45.4 we are limited to evaluating
the plausibility of the results and comparing the energy usage to that of the time
delay method.

4.3 Target Tracker Parameters

In Section 3.53.5 we discussed how the required probabilities can be calculated from
model parameters. The parameters were false alarm rate, new track rate, emission
rate matrix, and transition rate matrix.

In a mathematical sense, this list of four parameters is already very simple.
However, in the practical sense, the matrices are complex since they consist of
multiple elements. To eliminate the need for these matrices, we introduce the
adjacency matrix

A[i, j] =

{
1, if nodes i and j are adjacent
0, otherwise.

(37)

We can generate a simple transition rate matrix using the adjacency matrix

ΛT [i, j] =

λT ·A[i, j], if i 6= j

−λT
∑
j 6=i

A[i, j], if i = j, (38)
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where λT is the new transition rate parameter. Diagonal elements (i = j) are
calculated with a Equation (3333) to ensure that the sum of each row is zero.

With the sensor triggering rate parameter λE we can use the adjacency matrix
to generate emission rate matrix as

ΛE[i, j] =

{
k · λE ·A[i, j], if i 6= j

λE, if i = j,
(39)

where k is the ratio between the probability of triggering the nearest PIR sensor and
of triggering an adjacent PIR sensor.

At this point, some readers might wonder why we want to give all node pairs the
same adjacent node triggering rate. Certainly, if the adjacent nodes are very close to
each other measurements in the other node are far more likely than for two nodes
which are farther apart from each other. That is the case if some knowledge about
the distance between the nodes is available. This thesis focuses on a more simple
alternative, where the topology of the node network is the only information source.

False alarm rate λFA and new track rate λNT were also described in Section 3.53.5.
Since these are already scalar values, they can be included in the parameter list in
Table 33.

Table 3: List of target tracking parameters and their default values.

Parameter Default value Description
λT 100 mHz Target transition rate to adjacent nodes
λE 100 mHz Rate at which targets trigger the nearest sensor
k 0.1 Adjacent sensor triggering rate is k · λE
λFA 10 nHz False alarm rate
λNT 100 µHz New track rate
LI 20 min Lifetime of the targets in interior nodes
LB 10 s Lifetime of the targets in border nodes (e.g.

building entrances)
M 10 Maximum number of hypotheses

Table 33 also includes two lifetime parameters: one for interior nodes and one for
border nodes. These are used for track deletion (see Section 3.33.3). If they are given a
different value, it is important to consider how the division between border nodes
and interior nodes are done.

To run the tracker we need values for eight scalar parameters, a true/false
adjacency matrix and a true/false vector indicating which nodes are border nodes
and which are not. In Chapter 55 our goal is to optimise the scalar parameters so that
the same values could be used in all real life situations. After that only the structure
of the network is required in the form of adjacency matrix and border node vector.
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5 Results
In this chapter, we test the algorithm from Chapter 33 in simulated and real life
environments. We first examine the fundamental properties of the approach in
Section 5.15.1. These results are based on a computer simulation.

In Section 5.25.2 we go through parameters in Table 33 one by one and check how
they affect the results. The data for these tests was collected with the test cabinet:
actual wireless devices which received simulated motion detector input data.

In Section 5.35.3 we use real sensors recording human behaviour in a controlled
office environment. The status of occupancy is determined with both target tracker
and the time delay method so that comparison between the two methods can be
made in Chapter 66.

Finally, in Section 5.45.4 the data are extracted from a real test installation in a
normal open office area described in Section 4.2.44.2.4. Unfortunately, ground truth data
similar to the controlled test environment is not available. Therefore the analysis is
limited to evaluating the plausibility of the results.

5.1 Preliminary Tests

First Multiple Hypothesis Tracker (MHT) is compared to Local Nearest Neighbour
(LNN) and Global Nearest Neighbour (GNN) in Section 5.1.15.1.1. The results in a simple
simulated environment show that MHT is the most promising approach of these
three when working with discrete sensor data, but a GNN might also be sufficient.

In Section 5.1.25.1.2 we test how sensitive the results are to the length of the time
step ∆t. The initial hypothesis was that the value of the time step is not significant,
and the algorithm could be simplified by eliminating the extra variable.

In Section 5.1.35.1.3 we test hypothesis merging and see how it affects the hypothesis
trees. Initially merging was discovered to be computationally expensive but this
obstacle was solved with an improved algorithm.

5.1.1 Simulated Corridor

Setup for these simulations was described in Section 4.2.14.2.1. Raw sensor data are
shown in the top left graph of Figure 1414.

We begin by inspecting the raw data on the top left of Figure 1414. These
measurements are caused by two targets walking in a corridor to opposite directions,
meeting in the middle and then continuing in their own directions. Note that it
is also possible that the targets turn around when they meet and return in the
direction they came from. With the given data both of these two scenarios are
possible explanations.

There was plenty measurements in this simulation. The results in Section 5.35.3
indicate that with real sensors the measurements are get sparser. Another inaccuracy
compared to the real life scenario is that real PIR sensors do not have completely
random clutter. There can be some unexpected measurements, but there is almost
always an occupant somewhere near to the sensor.
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Figure 14: Raster plot of the simulated binary detections is presented at top left.
The other graphs are the positions calculated with LNN, GNN, and MHT. Different
colours indicate different tracked targets.

LNN algorithm, shown at top right in Figure 1414, can capture the general idea
of the tracked objects. First, there is correctly only two targets (orange and dark
blue). Around 25 seconds from the start, a purple target appears. It is not visible in
the graph, but in reality, the purple target is overlapping with the dark blue which
is not visible after the appearance of the purple target. Similarly, light blue target
starts to overlap with the orange after around 45 seconds. Close to the end, another
light blue target appears in an area with no real targets. It was caused by coinciding
false alarms around that area.

Results with GNN are more accurate as there are just two notable tracked
targets (orange and dark blue). Algorithm is not flawless when the two targets are
close to each other, but it catches on after a couple of observations. As previously, a
third target (light blue) appears close to the end of the simulation, due to multiple
coincident false alarms.

The most accurate interpretation for this data set is given by the MHT. There
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are two tracked targets (orange and light blue), and their tracks are continuous
through the whole data set. MHT assumes that after the targets meet in the middle,
they turn around and walk back to where they came from. As mentioned earlier,
this outcome can be justified since that kind of simulation would produce a similar
data set.

5.1.2 Sensitivity to the Length of the Time Step

Preliminary tests revealed that the tracker is not very sensitive to the length of the
time step. Time step ∆t is used in Equation (2828), Equation (2929), Equation (3030), and
Equation (3434) to calculate Markov model related probabilities. In this section, we
test an alternative algorithm where variable ∆t is set to one second regardless of the
actual time difference.

To examine this in more detail, we take a closer look at the first 20 seconds of
simulation test case from Section 5.1.15.1.1. Figure 1515 illustrates the results in the form
of hypothesis trees. Hypothesis merging was not used in this test.

In Figure 1515 the horizontal axis represents time. Arrows between the hypotheses
indicate which hypothesis from the previous generation was used for generating of
each hypothesis. All hypotheses are used to generate child hypotheses but because
of pruning the child hypotheses might not be visible on this chart.

On each column, the most likely hypothesis is the one with the largest marker.
The most likely hypotheses are also highlighted with red. The most likely hypothesis

Figure 15: Hypothesis tree with the normal algorithm (top) and a constant time
step of ∆t = 1 (bottom). The probability of a hypothesis is proportional to the area
of the circle and most likely hypotheses are highlighted with red. Time is on the
x-axis and arrows represent parent-child relationships.
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frequently jumps to another branch of the tree. This indicates that GNN, which is
unable to do that kind of corrections, would not perform as we as MHT.

The two graphs in Figure 1515 are very similar but not identical. While the general
shape of the graph and the path of the most likely hypothesis are the same, there
are some differences in the probabilities of the less likely hypotheses. To confirm
this, we also compared the outputs (the tracked target locations for the most likely
hypothesis) of the two algorithms. They are identical except for one small difference.
The standard algorithm recognised a second tracked object at time step 9 while
constant time step method confirmed it at time step 10.

For the rest of this chapter, we use the standard method with variable time step.

5.1.3 Hypothesis Merging

Next, we implemented merging of hypotheses. The hypothesis tree looks very different
after merging is implemented. Multiple hypotheses from the previous generation
can now be used to generate a new hypothesis because of the merging of the child
hypotheses. Hypothesis tree in Figure 1616 shows analysis of the same dataset as in
Section 5.1.25.1.2 shown without merging in Figure 1515, but with a maximum number
of hypotheses limited to 5. This choice was made to keep the graph readable since
merging has radically increased the number of child-parent relationships. In practice,
it is beneficial to choose a larger maximum number of hypotheses than 5.

In Section 3.23.2 we anticipated that merging might be computationally expensive
since the number of hypotheses is limited to M only after the merging. To test this,
we compared run time between algorithm which made use of merging and a simplified
version where merging was skipped. The merging was initially done by comparing
all hypothesis pairs to see if they are equal. As expected, this resulted in O(n2)
complexity, which can also be seen on the right in Figure 1616. The second-degree
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Figure 16: Hypothesis tree with merging in effect (left) and run time of different
algorithms (right)
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polynomial fits perfectly to the runtime of the initial merging algorithm.
A more advanced method is to sort the hypotheses in a way which makes similar

hypotheses subsequent. This kind of sorting can be done in O(n log n). After that
step, similar hypotheses can be combined efficiently in O(n). With this improvement,
run times with and without merging had the same order of magnitude. Source code
for the two algorithms used in this section can be found from Appendix BB.

5.2 Parameter Optimisation in a Simulated Environment

In this section, we use the test cabinet (see Section 4.2.24.2.2) to find out how parameters
(see Section 4.34.3) affect the tracker behaviour.

We start examining of lifetime of the targets parameters in Section 5.2.15.2.1 with
interior node lifetime. In Section 5.2.25.2.2 the model is further improved by adding a
different lifetime to the border nodes. However, this addition reveals some issues
which required the introduction of initialisation hypothesis and extending of the
borders.

In Section 5.2.35.2.3 and Section 5.2.45.2.4 we effectively change the modeled triggering
rate of closest sensor and those adjacent to it, respectively. Since observations in
adjacent nodes were not simulated one should exercise caution when applying the
results in this section. In these tests the value of k did not have any significant effect
on the tracker.

Finally, in Section 5.2.55.2.5, Section 5.2.65.2.6, and Section 5.2.75.2.7 we test the three
remaining rate parameters λT , λFA, and λNT , respectively.

The implications of these results are be discussed in Section 6.26.2.

5.2.1 Lifetime in Interior Nodes

In this initial test, we did not define any interior nodes, and all nodes were treated
as if they were on the border. Thus we only have one lifetime parameter to optimise.
Results with four different parameter values are shown in Figure 1717.

Each graph in Figure 1717 has the ground truth (Gt) on the left and estimated
occupancy (Et) on the right. The maximum number of hypotheses M was set to
5 to speed up the calculations. Simulation time is presented on the y-axis. Black
lines represent the time periods when the area was occupied (1) while white line
means that it was unoccupied (0). Errors in the predictions are highlighted with red
if Gt = 1 and blue if Gt = 0.

The same analysis was run with 2000 values for the lifetime between 0 s and 50 s.
Each of the error plots in Figure 1717 is described as a single column of pixels. These
have been combined for the graph on the left in Figure 1818.

As Figure 1717 shows, when lifetime of targets is under 5 s, the algorithm regularly
fails to detect occupancy. Once the lifetime is increased, the errors gradually decrease
until most of them disappear around a lifetime of 35 s. Beyond 35 s, the lifetime
does not have a large impact on the results except for increased time of estimated
occupancy after actual occupancy has ceased.
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LI = LB = 10 s LI = LB = 20 s

LI = LB = 30 s LI = LB = 40 s

Figure 17: Real occupancy status of a room and status estimated with target tracker
using different lifetimes of the targets. Errors are marked with red when the space
was occupied (UCF error) and blue when unoccupied (ECF error).
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Figure 18: Error barcodes for different interior node lifetimes (left) and key ratios as
a function of lifetime of the targets (right).
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Duration of red and blue error affect to the User Comfort Factor (UCF) and
Energy Conservation Factor (ECF), respectively. These and the Prediction Accuracy
Factor (PAF) calculated with Equation (55), Equation (44), and Equation (33) and are
shown in graph on the right in Figure 1818.

5.2.2 Border Lifetime and Adding of an Initialisation Hypothesis

We now proceed to use a different lifetime value for border and interior nodes. That
allows us to have the best of both worlds: user comfort from long-lasting targets in
interior nodes and energy savings from short lifetimes on the border nodes.

Until this point, we have used the same value for lifetimes of the targets in interior
nodes LI and border nodes LB. The parameters should be given different values to
get the real benefit from a target tracking model. This way targets, which have been
successfully tracked to the interior nodes, become more significant and stable than
the targets which have been tracked to exits.

This approach was first tested by making only the nodes directly adjacent to
entrances border nodes. The top left graph in Figure 1919 shows the results with
this method when other parameters were given standard values (see Table 33). The
maximum number of hypotheses M is 10 with the standard settings. As can be seen
from the bar code plot, the targets sometimes persist in the model long after all
simulated occupants have left the office. Thus, this method alone is not able to give
satisfactory results.

A closer look at the tracking results reveals that this was caused by multiple
targets leaving the area simultaneously. The border node detected motion only once,
which could be used to move only one of the targets to the border node. Rest of
the targets were left behind to the nodes adjacent to the border and thus were not
deleted within the short deletion time.

One way to deal with this issue is to increase the maximum number of hypotheses.
If there are no new signals from PIR sensor, the hypotheses with fewer targets
become more probable over time. We can see that that with 100 hypotheses this
issue is solved on the top right graph of Figure 1919.

The algorithm was updated to add an initialisation hypothesis after every time
step, as described in Section 3.63.6, to help to remove this kind of instability. These
results are shown in Figure 1919 bottom left. With a maximum of 10 hypotheses, the
problem persists but is solved with a maximum of about 20 hypotheses.

A third successful improvement was to extend the border to adjacent nodes. In
practice, this means that lifetime was 10 s in the two nodes next to exits and the six
other nodes adjacent to them. These results are shown in Figure 1919 bottom right.
There are almost no errors even when the maximum number of hypotheses is only
10.

In Figure 2020 we can see how an increasing number of hypotheses affects these
two new approaches. Lifetime at interior nodes LI was set to 100 min to enhance
the effect further. All other parameters were kept at default values.
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M=10 M=100

M=20 with init. method M=10 with extended border

Figure 19: Results when lifetime is set to 10 s at border nodes and 20 min at interior
nodes. Init. method means adding of the initialisation hypothesis with a small
probability.
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Standard algorithm Init. method

Extended border Init. method & extended border

Figure 20: Errors with different number of hypotheses (M) using alternative methods.
Init. method means adding an initialisation hypothesis after every time step.
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5.2.3 Sensor Triggering Rate

We now return to defining all nodes as border nodes again, which allows us to
examine parameter λE closer. As explained in Section 4.34.3, sensor triggering rate λE
denotes the rate at which targets trigger their nearest PIR sensor. In this section, we
assume that triggering a neighbouring PIR sensor is one tenth as likely, or in other
words k = 0.1 (see Table 33).

In a preliminary test, the same node was repeatedly triggered by one-second
intervals. In real life, this would correspond to an occupant staying close to a single
sensor, but moving and regularly triggering the PIR sensor. The correct conclusion
from that kind of data would be that there is only one tracked target. However, with
a bad choice of tracker parameters and a high rate of observations more than one
target can be created in the model.

When λE is set to have smaller values than 1 Hz the algorithm correctly deduces
that there should be more than one occupant in that node. The deduction is not
made instantly but requires a sufficient number of observations from the node. These
results are shown in Figure 2121.

Within the first 100 s, a single-target-hypothesis is always most likely when
λE > 450 mHz (cyan area). One target is the most likely explanation for all values
of λE up to around 30 Hz. After that rounding errors start to interfere with the

Figure 21: The modeled number of targets to explain constant measurements at a
rate of 1 Hz as the function of sensor triggering rate λE1. The expected result is one
target.
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computations and the algorithm no longer works.
Another test cabinet simulation was used to test this parameter with more

realistic data. Barcode graphs with values λE = 500 mHz and λE = 5 Hz are shown
in Figure 2222. Both lifetime parameters were set to 100 s in this test. Default values
in Table 33 were used for other parameters.

λE = 500 mHz λE = 5 Hz

Figure 22: Increasing λE to 5 Hz introduces unwanted UCF errors (red).

In the graph on the left, we can see that the predictions are very accurate. Errors
are present only after periods of occupancy in the form of transition errors.

When λE = 5 Hz the results are no longer that accurate. We notice some new
error clusters where the prediction has failed to detect occupancy. Based on the
ground truth data these occur when only one occupant was present in the office. The
pattern of these errors can be seen in Figure 2323.

As can be seen in Figure 2323, if λE is too large a seldomly observed target cannot
be reliably detected. First errors seem to appear around λE = 1.35 Hz. The graph
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Figure 23: Error barcodes as the function of λE (left) and a close-up of one of the
error clusters (right).
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on the right shows a close-up of the first error cluster in the bottom left. Note how
the error consists of stripes. In between the model correctly noticed the target, but
changed to the wrong hypothesis after only a few time steps.

5.2.4 Adjacent Node Triggering Rate

Adjacent node triggering rate k is a useful parameter to explain an occupant triggering
multiple sensors from a single location. Although test cabinet simulation was not
designed to include this kind of behaviour, it was used to check the effect of this
parameter nevertheless. Results can be found in Figure 2424.
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Figure 24: Errors with different values for k (left) and key ratios (right).

In Section 5.2.45.2.4 values of k between 0 and 1 were tested. Since k is defined as the
ratio between the likelihood of observation in the most likely sensor and the adjacent
sensors, the values of k have to be between 0 and 1. As can be expected from the
design of the simulation mentioned earlier, modeling detected motion in adjacent
nodes is not beneficial for test cabinet data analysis. k = 0 gave the best results in
this case, but results were not significantly different with any values k < 1.

Thus it is unfortunately not possible to give any recommendations for the value
of k based on this simulation.

5.2.5 Transition Rate

Transition rate is the rate at which occupants move from one node to adjacent nodes.
It can be used to calculate the transition probability (see Equation (3434)).

With the default value of 100 mHz, the probability of transition to an adjacent
node is 13 % for a time step of one second. The actual values for transition rates
are usually somewhere around this number. For a moving target the probability of
moving to an adjacent node within one second is somewhere around 50 % while a
still target can stay in the same node for hours and thus have a transition rate of
less than 100 µHz.
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Transition rates between 1 µHz and 100 Hz were tested, but there was no apparent
effect on the results. It is unclear why this parameter had such a negligible effect.
Possibly a small transition rate decreases the probability of all hypotheses equally,
and after normalization, the output is same as before.

5.2.6 False Alarm Rate

In some applications of target tracking, such as radars, false alarms can be very
frequent. However, for motion detectors, they are almost non-existent. A properly
functioning PIR sensor never makes observations in an empty building. In Section 5.35.3
and data shown in Appendix CC measurements were never made when an occupant
was not present. Apart from other moving objects, such as pets or maybe a curtain
moving with the wind, we can safely say that false alarm rate is zero.

However, this parameter can have another role in a target tracking model. If
something has gone wrong, a very unlikely false alarm can be used as an explanation
for the events. To bring this kind of flexibility to unexpected combinations to the
model, we used a small value of λFA as the false alarm rate. [3333]

A high false alarm rate favors hypotheses with fewer targets. If only a few
observations have been made, false alarms can be more likely explanation than an
actual target. This effect is visible in Figure 2525.

0 2 4 6 8 10

6
FA

 (mHz)

0

1

2

3

4

5

6

7

8

S
im

ul
at

io
n 

tim
e 

(h
ou

rs
)

0 2 4 6 8 10

6
FA

(mHz)

0%

20%

40%

60%

80%

100%

PAF

ECF

UCF

A
cc

ur
ac

y

Figure 25: Errors with different values for λFA (left) and key ratios (right).

Even λFA = 0 mHz seems to be working well in the simulated environment. It
is understandable since this simulation does not include clutter. At λFA = 1 mHz
first errors emerge and after λFA = 2 µHz the tracker completely fails to detect any
targets. Based on these results it can be recommended that λFA should be less than
100 µHz. The default value of 10 nHz is smaller than any of these values with a large
safety margin.
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5.2.7 New Track Rate

There is one parameter left to optimise: new track rate. It can be interpreted as the
rate at which new occupants enter the area. Tested values varied between 0 mHz and
10 Hz and figure 2626 illustrates the results. Note that these graphs have logarithmic
x-axes.
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Figure 26: Errors with different values for λNT (left) and key ratios (right). Note
that the horizontal axis has a logarithmic scale.

The target tracker seems to work well even with minuscule values of λNT . A
minor increase in performance can be noticed after 10 nHz. Explanation clearly
is that λFA is 10 nHz. When λNT < λFA new occupants are first associated with
false alarms, and only after a second observation a new tracked target is initialised.
Generally in target tracking, this would be used to filter clutter and ignore single
measurements. In the case of PIR sensors false alarms are almost nonexistent, and a
new tracked target should be initiated immediately after the first observation.

When new target rate is too high, more than 10 mHz, ECF starts to decrease. At
that point, there is clearly incorrectly many targets within the model. To summarise,
new track rate should be slightly larger than false alarm rate but always less than
10 mHz.

5.3 Controlled Office Environment

Now that we have a general understanding of the tracker parameters, it is time to
verify the algorithm with proper sensor data. The challenge with real sensors is
to determine the actual occupancy status, i.e. the ground truth. In this section,
occupancy status is determined by documenting all occupant movements through
the whole test period. This setup enables accurate calculations of the relevant key
ratios.

These tests were performed according to the description from Section 4.2.34.2.3.
During the four and half hours, 874 messages were received from the wireless network
of which 587 reported detected motion. Additionally, 428 messages contained a state
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transition and 11 times it was noticed that at least one state transition message had
been lost.

With these values, the error rate can be calculated with Equation (3636) to be
2,5 %. Since the probability of error is small, Equation (3636) can be used reliably.
According to the more detailed data, these errors were distributed evenly among all
the sensor nodes.

In Section 6.2.36.2.3 the conclusion is that λE should be set somewhere between half
and 50 times the actual sensor triggering rate. The real triggering rate was measured
from the dataset to compare the parameter values with actual conditions. The values
for five different occupant positions are shown in Table 44.

Table 4: Motion detector triggering rates measured at while the occupant was sitting
different locations from Figure 1212.

Observation rate of Total Observation Sample time
Location the closest sensor (mHz) rate (mHz) (seconds)

A 0 0 1276
B 0 0 1103
C 0 0 230
D 80 140 376
E 1 5 1555

Positions A and C are outside of the test are and have correctly the rate of 0
observations per second. The same also holds for position B (see Figure 1212), which
was designed to be outside of the sensor line of sight. Position D is directly under
one sensor, and this value of 80 mHz can be used as an estimate of parameter λE.

For position D a significant number of observations were also done in the adjacent
nodes. Average value of k for the three adjacent sensors was 0.2. No observations
were done outside of the adjacent nodes during the test period.

5.3.1 Time Delay Method

Time delay method was applied to the dataset to get a comparison for the target
tracker. An observation always set the area to occupied until the time delay had run
out. The delay was given values between 1 min and 60 min, and the results can be
seen in 2727.

The error plot is much easier to comprehend than for target tracking. During
long periods without any measurements there was a red user comfort related error if
the time delay was not sufficiently long.

The optimal Prediction Accuracy Factor (PAF) of 77 % was archived with a time
delay of 19 min. This result corresponds to the longest time of occupancy when the
occupant was not seen by the sensors.
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Figure 27: Errors with different lifetime values (left) and key ratios as a function of
lifetime of the targets (right).

5.3.2 Target Tracking

In the following test, we had λNT = 100 nHz, LI = 60 min, LB = 30 s, and M = 100.
Other parameters had the default values in Table 33 with except λE which was used
as a variable.

Measurements and the target tracking output for the first 20 minutes with
λE = 18 mHz can be seen in Appendix CC. Since a raw data table can be difficult
to comprehend, the same values are also shown in Figure 2828. It has been made in
a similar fashion to Figure 1414. The sensor IDs on the y-axis can be found from
Figure 1212. Since sensor 8 did not make any observations within the test period and
sensors 1-7 are placed almost in a one-dimensional arrangement, we can use the
sensor ID number as an axis in the figure.
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Figure 28: Raw motion sensor data and target tracking output. Note that the x-axis
has been broken.
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One can immediately notice that the simulated and real measurements are very
different from each other. Most importantly: there is much less real measurements.
Each sensor gave only one measurement when the occupant walked past them.

Blue line shows the output of the target tracker. During the long break in time
axis the target moved was moved from sensor 5 to sensor 7, which is not visible in
Figure 2828. However, it can be seen well in Appendix CC.

The target seems to always one step behind of the measurements. This was due
to the fact that measurements in adjacent nodes were given such high likelihood.
Certainly there was also a hypothesis where the target had immediately moved to
the location of a new measurement, but it had a smaller probability than hypothesis
where the measurement was explained by a target in the adjacent node.

The results with four different values of λE can be seen in Figure 2929.

λE = 5 mHz λE = 10 mHz

λE = 18 mHz λE = 50 mHz

Figure 29: Real and estimated occupancy with varying values for λE. The optimum
was at 18 mHz.

When λE is close to zero (λE = 5 mHz, see Figure 2929 top left) the area is almost
always calculated to be occupied, which causes a significant loss in the energy
conservation ratio.
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When λE ≤ 29 mHz, the tracker correctly detects occupancy during the 19 min
period that the occupant was hiding at position B (see Figure 1212). The same also
happened between 12:43 and 13:02 and there were no observations during that time.
These periods were not handled correctly when λE = 50 mHz.

Most difficult period of occupancy to detect was just before 16:30. When λE >
10 mHz the tracker fails to detect occupancy there (Figure 2929 top right, bottom left
and bottom right). During that time the occupant was at position E of Figure 1212.
This phenomenon is understandable since there is no motion detector with a direct
line of sight to that position. Additionally, a short distance to the exit makes position
E more complicated to analyse than position B.

Initially, area E was also supposed to have a sensor. After performing the test, this
sensor was found out to be malfunctioning and not reporting any motion. Position
E was thus left without sensor and became a similar hiding place as position B.
Adjacent sensors were still sometimes able to detect the occupant at position E.

Results with all values of λE between 100 µHz and 1 Hz can be seen in Figure 3030.
PAF over 85 % was reached when 6 mHz < λE < 29 mHz. Maximum PAF of 89 %
is achieved at λE = 18 mHz (Figure 3030 bottom left).
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Figure 30: Errors with different values for λE (left) and key ratios (right) with real
sensor data.

In Section 5.2.35.2.3 it we discussed that small values of λE can causes the tracker
to create multiple targets to account for a single occupant. That also happened in
this test. For λE = 18 mHz the tracker was handling multiple targets more than
once through the analysis. In some cases, such as when the occupant was triggering
multiple sensors from position E, there were multiple targets in the same position
with one another.

5.4 Tracker Behaviour in an Open Office

Using the feedback from results in Section 5.25.2 and Section 5.35.3 we made some updates
to the default parameter values in Table 33. These updates are discussed in more
detail in Section 6.26.2 and Section 6.36.3. The parameter values used in this section can
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be found from Table 22 in column "Recommendation". The only exception is that λE
was set to 100 mHz.

The tracker was run live in an open office. Short lifetime at border nodes (2 min)
made target tracker react quickly to leaving occupants while long lifetime at interior
nodes (60 min) enabled it to detect extended periods of occupancy outside of the
line of sight. Results and their comparison to the time delay method are shown in
Figure 3131. The results seem plausible. Unfortunately, ground truth data was not
available in this test.

20 min time delay 5 min time delay

Figure 31: Comparison between target tracking and time delay method with two
different values for the time delay.
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6 Discussion
We now proceed to address the implications of the results in Chapter 55. In Section 6.16.1
the preliminary tests are discussed. Best results are given by a Multi Hypothesis
Tracking utilising the continuous length of the time step and hypothesis merging.
However, the difference to more simple methods, Global Nearest Neighbour (GNN)
and fixed length of the time step, is not remarkable.

In Section 6.26.2 the results from simulations with the test cabinet are be used to
optimise target tracking parameters in Table 33. These results are summarised in
Section 6.56.5 together with some recommendations based on tests with real sensors.

In Section 6.36.3 we compare the accuracy of target tracking to that of the time
delay method. These are the most significant results in this thesis since according to
Figure 3333 target tracking gives superior results.

Section 6.46.4 also compares the time delay method and target tracking. We discuss
how to combine time delay and target tracking into a hybrid algorithm, and how
large the energy savings are compared to a long time delay of 20 min.

6.1 Preliminary Tests

Results in Section 5.15.1 can be used to justify major design choices of the target
tracking algorithm.

In Section 5.1.15.1.1 Local Nearest Neighbour (LNN), Global Nearest Neighbour
(GNN) and Multi Hypothesis Tracking (MHT) were tested in a simulated environment.
With LNN the model created an excessive amount of tracked targets. As noted in
Section 2.3.12.3.1 there is no mechanism in LNN to delete or merge overlapping tracked
targets. If this algorithm was run for a longer period of time, it is possible that more
and more tracked targets keep stacking up eventually slowing down the computations.

GNN gave very similar results to MHT. Neither of these methods was correctly
able to identify that there were only two targets with constant velocities. For
our application, the exact identity of the targets is not necessary. In some other
application where the identity of the targets also matters, a good approach could be
to estimate not only the position but also the velocity of the targets [3333]. Since the
velocity vector includes the information about the direction of the targets, this kind
of advanced model should give the correct analysis in this test setup.

A look into the more detailed output of the application reveals, that the most
likely hypothesis was generated from something else than the previous most likely
hypothesis only a few times in this test. It did not occur at all in the most interesting
part of the calculation, i.e. when the two targets met. Consequently, it should be
possible to achieve similar results with a well-tuned GNN.

In Section 5.1.25.1.2, sensitivity to the length of the time step was tested by comparing
results with the standard algorithm and an alternation where the length of the time
step was fixed to 1 s. Although the time step is not a particularly important variable,
it was shown to have a minor role. For this reason, variable time steps were used in
all other tests.
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As can be seen in Figure 1616, merging with the improved algorithm is computa-
tionally effective. Merging similar hypotheses frees space from the list of hypotheses
to less probable hypotheses, which would normally require a much higher maximum
number of hypotheses to get detected. Overall, merging can be seen as a method to
decrease the need for computational resources.

6.2 Parameter Optimisation in a Simulated Environment

Results in Section 5.25.2 give good data to base target tracking parameter values on. In
Section 6.2.16.2.1 we first figure out the minimum value for the lifetime of the targets. As
expected, the value should be larger than the maximum expected interval between
two observations. In Section 6.2.26.2.2 we divide the nodes into border nodes and interior
nodes. Initially, this created some issues with tracker stability, but these were later
solved by adding an initialisation hypothesis and increasing the number of border
nodes.

Parameter λE is discussed further in Section 6.2.36.2.3. It is limited by two factors.
Too small a value will result into the tracker creating multiple targets to account
for a single occupant. Since this conclusion is incorrect, this kind of behaviour is
undesired. However, in Section 6.36.3, we see that the wrong model can sometimes give
better results. The second factor limiting values for λE is that if the value is too
large, the tracker might ignore targets which are detected too rarely by the passive
infrared (PIR) sensors.

The test cabinet did not model the PIR sensors perfectly. The main difference was
that motion in adjacent nodes was not simulated, i.e. a still occupant was modeled
with measurements from a single sensor. Results with real sensors in Table 44 indicate
that at location D almost half of the observations were made by adjacent sensors.
Furthermore, the distribution of the time intervals between two measurements were
very different from each other. This is illustrated in Figure 3232.
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Figure 32: The estimated distribution for time intervals between two measurements
(one or both of which can be from an adjacent sensor) for location D compared to
the distribution used in the simulation.
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The simulated measurements occurred on 30 s to 35 s intervals while the actual
distribution had many intervals under 10 s. This difference explains well why lifetime
values under 30 s gave such inaccurate resuls in Section 5.2.15.2.1.

Because of these inaccuracies, parameter k, the ratio of observation rate of a
nearby sensor and the closest sensor, did not affect the results as can be seen in
Section 5.2.45.2.4. Likewise, transition, false alarm, and new track rate parameters are
not discussed in this chapter since none of these played a significant role in the fine
tuning of the tracker. Results are completely indifferent to any reasonable values of
transition rate. As long as λNT and λFA rates are measured in nHz and λFA < λNT ,
the algorithm performs as expected.

6.2.1 Lifetime in Interior Nodes

Results which examine the impact of the lifetime in interior nodes are presented
in Section 5.2.15.2.1. When lifetime is 40 s (Figure 1717, bottom right), the results of the
prediction correspond to ground truth remarkably well. Some transition errors are
visible on the graph in the proximity of changes to the state of the ground truth. It
seems that there are no spurious errors (see Figure 33) with a lifetime of 40 s.

The shorter the lifetime the more errors appear. This can be explained by the
fact that the still targets are simulated to trigger PIR sensors every 30 s to 35 s as
noted in Section 4.2.24.2.2.

The stairway-like shape of the curve in Figure 1818 is somewhat surprising. There
are no such approximations in the tracker that could cause this kind of discrete
improvements to the results. It seems that the rounding has been done within
the PIR sensor simulator. A possible explanation is that the interval between two
observations is rounded to the closest integer (in seconds) after the randomization.

The accuracy seems to improve substantially when the lifespan passes certain
thresholds. That could be caused by rounding in the simulation software and it is
not expected that this phenomenon would appear in real data.

In the case of this simulation, lifetime of 35 s gives the best results. This does
not generalise to real life situations since occupants are not guaranteed to trigger a
sensor at least every 35 s. One might be willing to compromise the ECF by increasing
lifetime in order to maximise user comfort.

In a more advanced target tracker, the suitable lifetime parameter could be
learned from the data as has been done previously with the time delay method [1818,
1919]. However, such approach is outside of the scope of this thesis.

6.2.2 Border Lifetime and Adding of an initialisation Hypothesis

In Section 6.2.26.2.2 we applied a different lifetime for interior and border nodes. Initially,
the accuracy was poor (see top left graph in Figure 1919), but the issue was solved with
three alternative approaches: increasing maximum number of hypotheses, adding of
an initialisation hypothesis (see Section 3.63.6), and extending the borders to account
for nodes adjacent to exit nodes.

In Figure 2020 it is clearly visible how the use of initialisation hypothesis and
extending border decrease the required amount of hypotheses in the model. When
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the extended border is used, there are virtually no errors when M ≥ 5. Both of these
methods are beneficial to the stability of the tracker and should be utilised when LI
and LB are given different values.

6.2.3 Sensor Triggering Rate

Sensor triggering rate λE was found out to be one of the most important parameters.
As can be seen in Figure 2121, too small a values of sensor triggering rate λE result in
a single occupant being modeled with multiple targets. In this test, the sensor was
simulated to detect motion once every second. For the default value of λE = 100 mHz
four targets is the most likely explanation after 100 s since that part of the graph is
yellow. After 622 s the number of targets reaches its presumable maximum value of
7 targets. This kind of behaviour is mathematically understandable but practically
undesirable. Based on this test, λE should be set larger than half of the actual sensor
triggering rate.

The theoretical maximum rate of the sensors used in this thesis is approximately
300 mHz. In practice, the maximum rate is much lower. Our measurements indicated
that the sensors rarely detect motion at a higher frequency than 130 mHz and even
that required careful movement which was designed to trigger an observation as often
as possible. This behaviour can thus be avoided by setting λE ≥ 50 mHz.

This simulation based result agrees with the test with real sensors. Results in
Section 5.35.3 indicate that with λE = 18 mHz a single occupant was modeled with
multiple targets.

In Figure 2323 it can be seen that too large values for λE interfere with the detection
of targets which are seldom observed. In that test, the simulated triggering rate was
around 30 mHz for still targets. Therefore λE should be smaller than 50 times the
actual triggering rate.

Since λE is such an important parameter, it can be worthwhile to set the optimal
value individually for each sensor. In a more advanced algorithm, it would be possible
to learn optimal value directly from the data in a similar way as how optimal time
delay can be learned (see Section 2.1.32.1.3). [1818].

In summary, modeled sensor triggering rate should be set between 0.5 and 50
times the actual triggering rate.

6.3 Controlled Office Environment

In chapter 5.35.3 the same dataset was analysed with both time delay method and a
target tracker. Results with the time delay method (Figure 2727) are clearly worse
than those with target tracker (Figure 3030).

Von Neida et al. [1313] have also been able to get PAF of 74 % with the time delay
method. It is surprising that the accuracy is that close to our results with the time
delay. Test in Section 5.3.15.3.1 was performed only during daytime while Von Neida et
al. had two weeks of continuous data. That should give them an advantage since
nights are easier to estimate (always unoccupied) than days. That means that overall
our estimations seem to have been more accurate.
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Occupant detection is a two-objective optimisation problem between user comfort
and energy savings. For this reason, comparing the target tracker and the time
delay method is not a straightforward task. The comparison can still be made by
selecting a goal value for the User Comfort Factor (UCF) and then determining the
best possible Energy Conservation Factor (ECF) for each method. This comparison
can be seen in Figure 3333.

The datasets of this figure are the same as in figures 3030 and 2727. For the time
delay method, different values of UCF were obtained by changing the length of the
time delay between 3 min and 18 min. Values of the time delay are not visible in the
figure.

Similarly, different key ratios for target tracker were calculated by using the λE
as the variable. It was given values between 5 mHz and 106 mHz. Note that only
one of the parameters was varied in this test. By also changing the values of the
other parameters, the target tracker could reach even higher values of ECF with the
same UCF.

As demonstrated in Figure 3333, target tracking gave superior results to the
traditional model. The difference was most significant if UCF of 90 % or less is
sufficient. For example, for UCF = 80 % the time delay method made more than
triple the amount of mistakes when the room was unoccupied compared to the target
tracker. For UCF = 95 % this value dropped to 1.5 and when UCF = 99 % the two
methods give the same result.

If UCF of around 90 % can be accepted, the target tracker can reach an ECF
of at least 86 %. In other words, 86 % of the time when the area is unoccupied
the target tracker has been able to detect it successfully. In the test run, the area
was unoccupied 34 % of the time. This means that the energy savings for lighting
could potentially be 29 % compared to a system which was on during the whole test
period.

A time delay method with a UCF of 90 % would only reach ECF of 59 %, which
would result in 20 % energy savings. In other words, the target tracker has the
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Figure 33: Comparison between the target tracker and a time delay method.
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potential to save 15 % of energy compared to the current solution.
These results can be applied to all occupancy-dependent energy use which can be

turned off instantly after occupancy has ended. Lighting is a good example of this
kind of application. Ventilation can also be treated this way to some extent, while
heating and cooling would require entirely different approach.

As mentioned in Section 2.12.1 there have been previous improvements to the time
delay method with various algorithms. For example, Bayesian Belief Networks have
given promising results [2121]. Comparing the strengths and weaknesses of the target
tracker and these methods is outside of the scope of this research.

6.4 Tracker Behaviour in an Open Office

As can be seen in Figure 3131, 20 min time delay method is much more conservative
than the target tracker. If a lighting or heating, ventilation, and air conditioning
(HVAC) system were controlled by target tracker alone, it would save 20 % of total
energy usage. The lack of ground truth means that we are unable to know whether
this kind of systems would decrease user comfort or not.

The output of the target tracker and 5 min time delay method seems similar to
target tracker. During the test period, time delay method estimated twice the area
to have become unoccupied slightly earlier than the target tracker. These could
potentially have been UCF errors caused by the short delay. In this case, target
tracker would decrease energy usage only 8 % compared to the time delay method.

The target tracking could also be used together with the time delay method. A
short delay can be reinforced with a target tracker, which is specialised in detecting
still targets. Therefore one should use OR operator: if one of the methods detects
occupancy the room is kept in occupied state. In this test, a combination of a target
tracker and the 5 min time delay would save 12 % of energy compared to estimation
with a 20 min delay. Although real occupancy is not available, it is unlikely that
both target tracker and 5 min time delay method would have made a mistake at the
same time.

6.5 Summary recommended parameter values

We have performed basic tests to all relevant parameters of the target tracker.
Recommendations for parameter values can be found in Table 55.

Table 55 also includes the default values, which were just an initial guess. The
difference between the final recommendation and the default value was most significant
for sensor triggering rate λE. Minor adjustments were also made for new track rate
λNT , lifetime at interior nodes LI , lifetime at border nodes LB, and the maximum
number of hypotheses M . For the other parameters λT , k and λFA the tests were
not conclusive, and default values were kept in effect.

λE was found out to be one most important and complicated parameters. On
one hand, if the value is too large, User Comfort Factor (UCF) drops. On the other
hand, too small values for this parameters makes the method incorrectly explain a
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Table 5: List of target tracker parameters, allowed intervals, and recommended
values.

Parameter Default value Minimum Maximum Recommendation
λT 100 mHz 1 µHz 100 Hz 100 mHz
λE 100 mHz 10 mHz 100 Hz 20 mHz
k 0.1 0 1 0.1
λFA 10 nHz 0 Hz 100 µHz 10 nHz
λNT 100 µHz λFA 10 mHz 100 nHz
LI 20 min 30 s 60 min 60 min
LB 10 s 10 s LI 2 min
M 10 5 - 100

single occupant with multiple tracked targets. That sometimes happens with the
recommended value of 20 mHz, but this is compensated with an increased UCF.

We also tested advanced methods: hypothesis merging (Section 5.1.35.1.3), adding
initialisation hypotheses (Section 5.2.25.2.2), and extending border nodes to adjacent
nodes (Section 5.2.25.2.2). All of these were discovered beneficial to accuracy and stability
of the tracker and using them can be recommended.
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.
.

.

. .
.

.

. .
.

7.1 Improvements to the Current Tracker

.
.

.
.
.

.
.

.
.

.

.
.

7.2 Automatic Configuration of Node Layout

.
.

.

.



61

.
.

. .

. .

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.

.

7.3 Predictive Models

.
.

.
.

.

.
.

. . . .

.



62

.
.



63

8 Conclusions
In this thesis, we present and test a novel method of analysing data from multiple
motion detectors. The test results indicate that target tracking successfully detects
occupancy with a higher accuracy than a conventional time delay method. In a
controlled test environment target tracking could potentially save 15 % of energy
compared to simple occupancy based control. These energy savings can be archived
without compromising with the user comfort. Configuring such system can be partly
automatised, but requires still slightly more work than the time delay method.

The new approach is exceptionally suitable for detecting occupants who are
outside of the line of sight of the sensors but unable to leave the area without being
noticed by a sensor. This property is useful in areas with high density of simple
passive infrared (PIR) sensors, and where the occupants have only a few exits.

These results show that target tracking can be used to increase energy efficiency
without compromising the user comfort. It can be used to collect accurate statistics
about the usage patterns, which in turn can be used to configure a heating, ventilation,
and air conditioning (HVAC) system manually.

In an improved system, these two systems can be integrated to control HVAC
directly with the occupancy information. In an integrated system, the proportion of
the energy savings can be different from the 15 % mentioned earlier depending on
the occupancy pattern. That is especially the case with systems which require energy
usage even when the area is not occupied, such as heating. More research and tests
with an implemented system integration are needed to test this more accurately.

Finally, a target tracker could be used in parallel with another method. When
using it together with a 5 min time delay, we were able to demonstrate 12 % energy
savings compared to a 20 min delay. Unfortunately, we were not able to measure the
user comfort of this approach in the scope of this thesis, but it can be assumed to be
relatively accurate.

We have identified areas for future research in multiple areas. The target tracking
algorithm can still be simplified without interfering with the quality of the results.
It is also possible to reduce the amount of configuration required by learning the
structure sensor network from raw data. Furthermore, the motion sensor provides
plenty of data to forecast occupancy, which would provide valuable information for
HVAC systems.

The algorithm described in this thesis should only be applied to dense sensor
networks. There should be at least two sensors between the area of interest and the
exit for the target tracker to detect longer periods of occupancy reliably. It is also
critical to process the observations in the order that they appeared. A lag in the
wireless connection could thus be a great challenge.

This work demonstrates that model based sensor data analysis can be done
efficiently and accurately. No teaching data are required with a high-level model,
and the algorithm can be easily applied to any new sensor sites.

In Finland, yearly energy consumption of residential and commercial lighting alone
is approximately 5 TWh [3535, 3636]. The potential of 15 % energy savings demonstrated
in this thesis translates into around 20 million euros per year.
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A Java method for generation of hypotheses
The following Java code was used to generate new hypotheses. Methods generateFA,
generateNT, and generateMV were used to generate false alarm, new track and
movement hypotheses, respectively.

Listing A1: Method in the Hypothesis class for generation of child hypotheses.
1 /∗∗
2 ∗ Generates c h i l d hypothes i s based on f a l s e alarms , new track or
3 ∗ a movement a s s o c i a t i o n . I f parameter m i s s e t to −1, the
4 ∗ i t e r a t i o n i s run without a measurement . Only one ch i l d hypothes i s
5 ∗ with w i l l be returned in t h i s case .
6 ∗
7 ∗ @param m number o f the s enso r which made the new measurement .
8 ∗ @param time Time o f the measurement as unix time in m i l l i s e c ond s .
9 ∗ @return ArrayList conta in ing a l l new ch i l d hypotheses .

10 ∗/
11 pub l i c ArrayList<Hypothesis> getChi ldHypotheses ( i n t m, long time ) {
12 ArrayList<Hypothesis> ch i l d r en = new ArrayList<Hypothesis >() ;
13 double C = ca l cu la t eC ( t h i s . p r obab i l i t y ) ;
14

15 // Clone t rack l i s t and d e l e t e i n a c t i v e t r a ck s
16 ArrayList<Track> temp_tracks = cloneTracks ( t h i s . t r a ck s ) ;
17 temp_tracks = de l e t eTracks ( time , temp_tracks ) ;
18

19 i f (m == −1){
20 // There i s no cur rent measurement , A = 1 ( Equation 25)
21 ch i l d r en . add ( generateFA ( c loneTracks ( temp_tracks ) , C, 1 , time ) ) ;
22 }
23 e l s e {
24 // Accounts f o r FA as s o c i a t i on , A = P(FA) ( Equation 22)
25 ch i l d r en . add ( generateFA ( c loneTracks ( temp_tracks ) , C, t r a cke r .FA

, time ) ) ;
26 // Accounts f o r NT a s s o c i a t i o n (n=0)
27 ch i l d r en . add ( generateNT ( c loneTracks ( temp_tracks ) , C, time , m) ) ;
28

29 // Loop over p o s s i b l e t a r g e t p o s i t i o n s f o r the measurement
30 f o r ( i n t x = 0 ; x<t ra cke r .EMIS . l ength ; x++){
31 // Skip x i f the emis s ion p r obab i l i t y i s 0 .
32 i f ( t r a cke r .EMIS [ x ] [m] <= 0) cont inue ;
33

34 // Loop over cur rent t a r g e t s
35 f o r ( i n t ta rge t Index = 0 ; ta rge t Index < temp_tracks . s i z e ( ) ;

ta rge t Index++){
36 // Accounts f o r a s s o c i a t i o n to cur rent t rack
37 ch i l d r en . add ( generateMV ( c loneTracks ( temp_tracks ) , C,

time , m, target Index , x ) ) ;
38 }
39 }
40 }
41 re turn ch i l d r en ;
42 }



68

B Merging algorithms
This appendix has the source code for the merging algorithms used in Section 5.1.35.1.3
in Java. Hypothesis.equals(Object o) was overwritten to return true if o is also
a Hypothesis object and the two object have same amount of targets with same
locations. Hypothesis.comp sorts the hypotheses list so that similar hypotheses are
adjacent. In practice, it is done by constructing a string with all the target positions.
Hypotheses are then sorted so that these state strings are in alphabetical order.

Listing B1: Initial mering algorithm.
1 ArrayList<Hypothesis> merge ( ArrayList<Hypothesis> hypotheses ) {
2 ArrayList<Hypothesis> newList = new ArrayList<Hypothesis >() ;
3

4 // Loop over hypotheses . O(N^2) because o f a nested loop .
5 f o r ( Hypothes is cur rent : hypotheses ) {
6 // ArrayList . indexOf ( Object o ) has to do a second loop .
7 i n t index = newList . indexOf ( cur rent ) ;
8 i f ( index != −1){
9 // A s im i l a r hypothes i s was found .

10 newList . get ( index ) . merge ( cur rent ) ;
11 } e l s e {
12 newList . add ( cur rent ) ;
13 }
14 }
15 re turn newList ;
16 }

Listing B2: Efficient mering algorithm.
1 ArrayList<Hypothesis> merge ( ArrayList<Hypothesis> hypotheses ) {
2 ArrayList<Hypothesis> newList = new ArrayList<Hypothesis >() ;
3 Hypothes is prev ious = nu l l ;
4

5 // Sort by s t r i n g s o f t a r g e t s t a t e s . O(N∗ log (N) )
6 hypotheses . s o r t ( Hypothes is . comp) ;
7

8 // Loop over hypotheses . O(N)
9 f o r ( Hypothes is cur rent : hypotheses ) {

10 i f ( cur rent . equa l s ( prev ious ) ) {
11 // The adjacent hypotheses are s im i l a r .
12 prev ious = prev ious . merge ( cur rent ) ;
13 } e l s e {
14 // The two hypotheses are d i f f e r e n t .
15 i f ( p rev ious != nu l l ) {
16 newList . add ( prev ious ) ;
17 }
18 prev ious = current ;
19 }
20 }
21 newList . add ( prev ious ) ;
22

23 re turn newList ;
24 }
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C Example data from the controlled environment
In this appendix we provide raw data tables related to results in Section 5.35.3. We
will use the sensor ID numbers from Figure 1212 for measurements and target tracking
output. The notes, which were done manually, use area names which can also be
found in Figure 1212.

Table C1C1 consists of example dataset where the occupant started from location A,
hid to location B for 19 minutes and returned in location A. The table combines three
different datasets: raw motion detections, target tracker output, and notes about
the location or movement of the occupant. The two first datasets were accurately
synchronised based on the unix time stamps, which had the accuracy of 1 ms. The
notes did not have that accurate time stamp in the first place, and those have been
added to an approximately correct row.

For target tracking λE was set to 18 mHz. Each time a measurement was made a
target tracking iteration was ran immediately. Some of the lines had no measurement
since these were just periodic updates to the hypothesis list which were done on
1 s intervals when there was no new measurements. Some of these lines have been
omitted to save space. The omitted lines occured on one second intervals, had no
measurements or notes and had the same target tracking output as the line above
them.

This dataset demonstrates well the power of target tracking. When the occupant
was in location B, the target tracker recognised that the room is occupied even
with the lack of new measurements. But when the occupant left the area and went
to location A, the target was deleted quickly i.e. the status of the room was set
unoccupied.
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Table C1: Example dataset from controlled office environment.

Time Measurement Target location Notes
12:43:26 Left location A
12:43:34 1
12:43:35
12:43:36
12:43:37
12:43:38
12:43:38 3 2
12:43:38 2 2
12:43:39 4 2 Enter room
12:43:40 6 4
12:43:40 5 5
12:43:40 7 5
12:43:41 5
12:43:42 5
12:43:43 5
12:43:44 5
12:43:45 5 Enter location B
12:43:46 5

330 similar rows omitted
12:49:18 7

768 similar rows omitted
13:02:08 7 Left location B
13:02:09 7
13:02:10 7 7
13:02:11 7
13:02:12 7
13:02:12 6 7
13:02:13 5 5
13:02:13 4 5
13:02:14 5
13:02:15 5
13:02:16 5
13:02:17 3 4
13:02:17 2 3
13:02:18 3

13 similar rows omitted
13:02:31 3 Enter location A
13:02:31 3

72 similar rows omitted
13:03:45
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